《菱形的判定》 (3).doc_第1页
《菱形的判定》 (3).doc_第2页
《菱形的判定》 (3).doc_第3页
《菱形的判定》 (3).doc_第4页
《菱形的判定》 (3).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

菱形的判定教学设计教学过程教学环节教学过程设计意图引课1、课件展示:三菱汽车标志图片提问:图案是由三个什么样的四边形构成?这种四边形的定义又是什么?2、在学生回答后通过课件展示下面题目检测学生对菱形定义掌握情况。已知如图,在平行四边形ABCD中,E、F分别是BC、AD的中点,连接AE、AC、CF,我们很容易得出四边形AECF是平行四边形。理由是:因为:四边形ABCD是平行四边形所以:AD BC又因为:E、F分别是BC、AD中点所以:EC AFEBF所以:四边形AECF是平行四边形C如果再添加“BAAC”这一条件,四边形AECF形状如何?为什么?3、通过上面题目的解答进一步讲解:刚才同学们说了,有一组邻边相等的平行四边形是菱形,这是菱形的定义,也就是说我们可以根据菱形的定义来判定一个四边形是菱形,除此之外,我们还能找到其他的判定方法吗?(出示课题菱形的判定) 迅速集中学生注意力,并提高学生的学习兴趣。让学生在已有的兴趣上 想试试身手,这样激发了他们的思维,可以使课堂变得活跃。使学生的求知欲望更强烈,从而顺利地将学生引进新课探究的活动中去。讲授新课讲授新课讲授新课随堂练习总结反思一、探究新知1、教师讲解:我们借鉴上几节课的探究方法,将菱形特有的性质定理的条件和结论进行交换,形成一个逆命题,然后通过我们推理证明,如果这个逆命题是真命题的话,那么我们就可以将它作为菱形的一个判定定 理。2、让学生讨论交流菱形特有的性质定理的逆命题有哪些?然后板书学生找出来的逆命题。a、对角线互相垂直的平形四边形是菱形b、四条边都相等的四边形是菱形c、每条对角线平分一组对角的四边形是菱形。DDCABODA3、教师在黑板上画出图形,让学生自己用推理的方法证明,学生证明后老师在黑板上给出过程。由此可以得到判定菱形的一种方法:对角线互相垂直的平行四边形是菱形(对角线互相垂直且平分的四边形是菱形)。4、让学生进行概括:四条边都相等的四边形是菱形;教师可直接给出证明。5、学生练习(课件展示)ADDCABOD已知如图,下列条件之一能使平行四边形ABCD是菱形的为( )ACBD BAC=DACAC=BD AB=ADA、 B、C、 D、二、应用实例ABCADDEFEODD1、课件展示问题:如图,已知矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,求证:四边形AFCE是菱形。2、引领学生分析证明思路:要证明四边形AFCE是菱形,由已知条件可知,EFAC,所以只需证明四边形AFCE是平行四边形,由于EF垂直并平分AC,所以只需证明OE=OF,只要证明AOE COF即可。3、学生自己完成证明,指名口述证明过程。三、应用实例(补充)1、课件展示问题:已知如图,ABC中,ACB=90O,BE平分ABC,CDAB于D,EFAB于H,CD交BE于F。ABACBAECBADECBAHDECBAFDECBA求证:四边形CEFH为菱形。2、让学生讨论交流寻求条件,老师适当给予点拨。3、教师对学生交流之后找出的零散条件给予整理并分析证明思路。4、师生共同证明并板书证明过程。 课件展示:1、如图,在四边形ABCD中,AC平分BAD,CE/AD交AB于点E。(1)求证:四边形AECD是菱形。ADED(2)若点E是AB的中点,试判断ABC的形状,并说明理由。CBADDCABOD2、如图,在四边形ABCD中,AC、BD交于点D,AB=5,AC=6,BD=8。求证:四边形ABCD是菱形。留给学生时间,先独立探究,再进行交流合作,最后汇报成果。菱形常用判定方法归纳为(让学生讨论归纳后,并用课件展示)1、有一组邻边相等的平行四边形是菱形。2、对角线互相垂直的平行四边形是菱形。3、对角线互相垂直且平分的四边形是菱形。4、四条边都相等的四边形是菱形。 让学生在学习中学会合作,学会倾听,同时学会表达。 通过剪纸操作,观察,量比,使学生的求知欲更加强烈,同时培养了他们的动手实践能力,学会一种数学问题解决的方法,使学生经历“观察实验猜想验证推理”的数学活动历程。 培养学生从多个角度对数学问题进行分析的意识,培养他们的观察能力,使他们能从实践操作中体验探究成功的喜悦,从而增强学生学习的自信心。 使学生对几种菱形的判定方法加深印象,为进一步进行菱形判定定理的应用起到促进作用。 使学生能用所学的判定定理进行证明,使他们的分析问题的能力得到锻炼与培养。 激发学生强烈的解决问题的愿望,从而注意力高度集中,同时激发同学的冲动性和思维的活跃性,使学生成为学习的主人,教师是学生学习的引导者、组织者和合作者。 使学生对所学知识进行整理而再进行实践,以达到消化知识的目的。ADDCABOD让学生讨论归纳,使学生对本节知识再进行一次梳理并能进行概括。作业设计分层布置(略) 使不同层次的学生能根据自己数学基础完成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论