软管夹钢带图.dwg
软管夹钢带图.dwg

I型软 管夹冲压装配工艺设计及部分模具设计【11张CAD图纸+毕业答辩论文】【冲压模具】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:443037    类型:共享资源    大小:2.83MB    格式:RAR    上传时间:2015-06-22 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
型软 冲压 装配 工艺 设计 部分 部份 模具设计 全套 cad 图纸 毕业 答辩 论文 模具
资源描述:

摘  要

冲压成型是金属成型的一种重要方法,它主要适用于材质较软的金属成型,可以一次成型形状复杂的精密制件。本课题就是将石化、化工、电力等行业的法兰密封结构中的垫片作为设计模型,将冷冲模具的相关知识作为依据,阐述冷冲模具的设计过程。

本设计对指定工件进行的单工序模设计,利用Auto CAD软件对制件进行设计绘图。明确了设计思路,确定了冲压成型工艺过程并对各个具体部分进行了详细的计算和校核。如此设计出的结构可确保模具工作运用可靠,保证了与其他部件的配合。并绘制了模具的装配图和零件图。

本课题通过对工件的冲压模具设计,巩固和深化了所学知识,取得了比较满意的效果,达到了预期的设计意图。

关键词:冲压成型;单工序模;弯曲模;冲孔


Abstract

Stamping is an important method of metal forming, it is mainly applied to relatively soft metal forming, can be a molding of precision parts of complex shape. This topic is to petrochemical, chemical, electric power industries in the flange gasket sealing structure as a design model, Die related knowledge as a basis to explain the design process of Die.

    The design of the suspension by the single operation dies design, the use of Auto CAD software to design parts drawing. Clear design ideas, determine the process of stamping and forming part of the various specific details of the calculation and verification. The structure of such a design die is used to ensure reliability, ensure coordination with other components. And draw the mapping of the mold assembly and part drawings.

    Suspension of the project through the stamping die design, consolidate and deepen the knowledge, and achieved satisfactory results, to achieve the desired design intent.


Keywords: press forming; single operation die; bending die;punching


目录

摘  要III

AbstractIV

目录V

1 绪论1

1.1 本课题的意义目的1

1.2 本设计的技术要求1

2 软管夹加工工艺规程设计2

2.1 要求2

2.1.1 标准要求2

2.1.2 软管夹所用材料,镀层厚度的要求3

2.1.3外观要求3

2.1.4 夹紧范围3

2.1.5 试验方法3

2.1.6  检验规则3

2.2 钢带加工工艺规程设计3

2.2.1 落料冲孔4

2.2.2 冲斜排孔4

2.2.3 冲标记4

2.2.4 孔部成型4

2.2.5 打磨毛刺4

2.2.6 检验4

2.3 壳体加工工艺规程设计5

2.3.1 壳体落料5

2.3.2 打弯脚冲标记5

2.3.3 成型5

2.3.4 弯脚成形6

2.3.5 检验6

2.4 蜗杆加工工艺规程设计6

2.4.1 下料7

2.4.2 墩头7

2.4.3车外圆及各台肩7

2.4.4铣槽7

2.4.5 搓丝7

2.4.6 去毛7

2.4.7 渗碳淬火7

2.4.8 镀锌7

2.4.9 检验7

2.5装配工艺规程设计7

2.5.1 钢带与壳体的装配工艺设计7

2.5.2 钢带,壳体与蜗杆的装配工艺设计7

2.6 工艺工序卡片及装配工序卡8

3 钢带冲孔模具设计11

3.1 钢带冲孔工艺分析11

3.1.1产品尺寸精度,粗糙度,断面质量分析11

3.1.2 产品材料分析11

3.2 钢带冲压工艺方案的确定11

3.2.1 钢带冲压工艺分析11

3.3 钢带冲孔模结构的确定12

3.3.1 模具的形式12

3.4 钢带冲压工艺计算12

3.4.1排样12

3.4.2 计算冲压力12

3.4.3 计算模具压力中心14

3.4.4计算刃口尺寸15

3.5 钢带冲孔模主要零件设计计算18

3.5.1 凹模的设计计算18

3.5.2 根据凹模尺寸查标准典型组合19

3.5.3 固定板的设计计算19

3.5.4 卸料板的设计计算20

3.5.5  弹性元件的设计计算20

3.5.6凸模的设计计算21

3.5.7 钢带冲孔模其他零件的设计和选用22

3.5.8 钢带冲孔模闭合高度的计算22

3.5.9 压力机的选择22

3.5.10 其他23

4 钢带冲斜孔模具的设计24

4.1 钢带冲斜孔工艺分析24

4.1.1产品尺寸精度,粗糙度,断面质量分析24

4.1.2 产品材料分析24

4.2 钢带冲斜孔工艺方案的确定24

4.2.1 钢带冲斜孔工艺方案分析24

4.3钢带冲斜孔模结构的确定25

4.3.1 模具的形式25

4.3.2 定位装置25

4.3.3 卸料装置25

4.3.4 导向零件25

4.4 钢带冲压工艺计算25

4.4.1 排样25

4.4.2 计算冲压力26

4.4.3 计算模具压力中心27

4.4.4计算刃口尺寸28

4.5 钢带冲斜孔模主要零件设计计算29

4.5.1凹模的设计计算29

4.5.2根据凹模尺寸查标准典型组合30

4.5.3 固定板的设计计算30

4.5.4 卸料板的设计计算31

4.5.5 定位零件的设计计算31

4.5.6凸模的设计计算32

4.5.7钢带冲斜孔模其他零件的设计和选用33

4.5.8 钢带冲斜孔模闭合高度的计算33

4.5.9压力机的选择34

4.5.10其他35

5 壳体落料模具的设计36

5.1 壳体落料工艺分析36

5.1.1产品尺寸精度36

5.1.2 产品材料分析36

5.2 壳体落料工艺方案的确定36

5.2.1 壳体落料工艺方案分析36

5.3 钢带冲孔模结构的确定37

5.3.1 模具的形式37

5.3.2 定位装置37

5.3.3卸料装置37

5.3.4 导向零件37

5.4 钢带冲压工艺计算37

5.4.1 排样37

5.4.2 计算冲压力38

5.4.3 计算模具压力中心39

5.4.4计算刃口尺寸39

5.5壳体落料模主要零件设计计算41

5.5.1凹模的设计计算41

5.5.2 根据凹模周界尺寸选择典型组合42

5.5.3 固定板的设计计算42

5.5.4卸料板的设计计算43

5.5.5 定位零件的设计计算44

5.5.6凸模的设计计算45

5.5.7钢带冲孔模其他零件的设计和选用45

5.5.8 钢带冲孔模闭合高度的计算45

5.5.9 压力机的选择46

5.5.10 其他47

6结论与展望48

6.1结论48

6.2不足之处及未来展望48




1 绪论

1.1 本课题的意义目的

毕业设计是对每个即将毕业的大学生都具有十分重要的意义:首先是对学生的知识能力进行一次全面的考核,其二是对学生进行科学研究基本功的训练,培养学生综合运用所学知识独立地分析问题和解决问题的能力,为以后工作或撰写专业学术论文打下良好的基础。所以我们需要抓住这次机会好好的锻炼自己的能力。

1.2 本设计的技术要求

本次毕业设计的题目是“I型软管夹冲压装配工艺设计及部分模具设计”专题是“冲压装配工艺设计”和“模具设计”,课题来源于无锡市海江汽车部件有限公司。本次设计的任务是:不锈钢I型软管夹的各个零件工艺规程的制定;完成生产软管夹的其中三种模具的设计。技术要求:要求模具工作平稳,结构简单,工作可靠,装卸方便,维修及调整便利,加工精度应符合零件图要求。

设计课题涉及到课题的分析、资料的查询、资料摘录,整理收集的资料。然后深入无锡市海江汽车部件有限公司生产一线向使用者、设计者学习,具体的了解模具的外形、模具的大致结构,并记录了如何有所改进,最后确定设计的方案。以及模具体的结构图,并进行相关零件的选型计算。设计该模具要求我们具备基本的实践知识和经济意识因此考虑到:模具的实用性以及企业资源。

本课题的设计由本人独立完成,故本人的设计说明书包括加工钢带的其中两种模具以及加工壳体的模具,并附有装配工艺卡片。


内容简介:
无无锡锡太太湖湖学学院院钢钢带带加加工工工工艺艺过过程程卡卡片片产产品品型型号号产产品品名名称称材材料料牌牌号号1Cr18Ni9Ti毛毛坯坯种种类类长条形钢带毛毛坯坯外外形形尺尺寸寸16.50.6 毛毛坯坯件件数数工工序序号号工工序序名名称称工工序序内内容容车车间间工工段段设设备备型型号号10落料冲孔 下料冲孔冲压20冲斜排孔冲斜孔冲压30冲标记用模具冲出厂标冲压40孔部成型定位,孔部成型冲压50打磨毛刺采用油石或抛光轮抛光机具60检验零零件件图图号号H HJ-10/150-01J-10/150-01零零件件名名称称钢带共共 4 4 页页第第 1 1 页页每每台台件件数数工工艺艺装装备备工工 时时准准 终终单单 件件CHT-01,游标卡尺CHT-02,游标卡尺刻字模具,游标卡尺孔部成型弯曲模,游标卡尺无无锡锡太太湖湖学学院院壳壳体体加加工工工工艺艺过过程程卡卡片片产产品品型型号号产产品品名名称称材材料料牌牌号号1Cr18Ni9Ti毛毛坯坯种种类类矩形带料毛毛坯坯外外形形尺尺寸寸44.90.6毛毛坯坯件件数数工工序序号号工工序序名名称称工工序序内内容容车车间间工工段段设设备备型型号号10落料 壳体落料冲压J23-1620弯脚打弯脚冲标记冲压J23-1630成型壳体弯曲成型冲压J23-1640弯脚成型弯脚部位成型冲压J23-1650检验零零件件图图号号HJ-10/150-02HJ-10/150-02零零件件名名称称壳体共共 4 4 页页第第 2 2 页页每每台台件件数数工工艺艺装装备备工工 时时准准 终终单单 件件CHK-01,游标卡尺CHK-02,游标卡尺CHK-03,游标卡尺CHK-04,游标卡尺无无锡锡太太湖湖学学院院蜗蜗杆杆加加工工工工艺艺过过程程卡卡片片产产品品型型号号产产品品名名称称材材料料牌牌号号Q235毛毛坯坯种种类类圆钢毛毛坯坯外外形形尺尺寸寸12毛毛坯坯件件数数工工序序号号工工序序名名称称工工序序内内容容车车间间工工段段设设备备型型号号10下料 按图纸要求长度下料机加工切断机20墩头冷镦机墩头成型机加工冷镦机30车加工车台阶及各外圆机加工数控车床40铣槽铣床铣槽机加工专用铣床50搓丝搓丝机一次搓出机加工搓丝机60渗碳淬火渗碳炉渗碳热处理渗碳炉70镀锌80检验零零件件图图号号H HJ-10/150-03J-10/150-03零零件件名名称称蜗杆共共 4 4 页页第第 3 3 页页每每台台件件数数工工艺艺装装备备工工 时时准准 终终单单 件件游标卡尺游标卡尺游标卡尺游标卡尺游标卡尺硬度测试机无无锡锡太太湖湖学学院院I I软软管管夹夹装装配配工工艺艺过过程程卡卡片片材材料料牌牌号号毛毛坯坯种种类类毛毛坯坯外外形形尺尺寸寸工工序序号号工工序序名名称称工工序序内内容容车车间间10准备按生产任务书,将适应尺寸规格的钢带、蜗杆、壳体准备装配车间20装配1将钢带与壳体铆合,插上芯片,打弯,并弯脚装配车间装配2将蜗杆装上装配车间装配3进行手工敲平、手工夹平、整体成型等整形工作装配车间装配4按规格定型成圆(椭圆)装配车间装配5收紧、放松两次,实验是否活络装配车间30检验检验、包装、入库产产品品型型号号零零件件图图号号HJHJ0202-10/150-0-10/150-00 0产产品品名名称称 I型软管夹 零零件件名名称称共共 4 4 页页第第 4 4 页页毛毛坯坯件件数数每每台台件件数数工工段段设设备备型型号号工工艺艺装装备备工工 时时准准 终终单单 件件仰合后弯脚模具装蜗杆后成型模具自制手动装配工具圆形、椭圆形圈圆机试验台架、调试工具英文原文The Lathes And Turning Processing1. LathesLathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool.The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod.The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed.The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmissionthrough which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives.Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle.The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76 mm (2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw.The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers.Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up to 3658mm(12 feet) are not uncommon. Most have chip pans and a built-in coolant circulating system. Smaller engine lathes-with swings usually not over 330 mm (13 inches ) also are available in bench type, designed for the bed to be mounted on a bench on a bench or cabinet. Although engine lathes are versatile and very useful, because of the time required for changing and setting tools and for making measurements on the work piece, thy are not suitable for quantity production. Often the actual chip-production tine is less than 30% of the total cycle time. In addition, a skilled machinist is required for all the operations, and such persons are costly and often in short supply. However, much of the operators time is consumed by simple, repetitious adjustments and in watching chips being made. Consequently, to reduce or eliminate the amount of skilled labor that is required, turret lathes, screw machines, and other types of semiautomatic and automatic lathes have been highly developed and are widely used in manufacturing.2 . Numerical ControlOne of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control (NC). Prior to the advent of NC, all machine tools ere manually operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than the limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator. Numerical control represents the first major step away from human control of machine tools. Numerical control means the control of machine tools and other manufacturing systems through the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician writes a program that issues operational instructions to the machine tool. For a machine tool to be numerically controlled, it must be interfaced with a device for accepting and decoding the programmed instructions, known as a reader.Numerical control was developed to overcome the limitation of human operators, and it has done so. Numerical control machines are more accurate than manually operated machines, they can produce parts more uniformly, they are faster, and the long-run tooling costs are lower. The development of NC led to the development of several other innovations in manufacturing technology:Electrical discharge machining,Laser cutting,Electron beam welding.Numerical control has also made machine tools more versatile than their manually operated predecessors. An NC machine tool can automatically produce a wide of parts, each involving an assortment of widely varied and complex machining processes. Numerical control has allowed manufacturers to undertake the production of products that would not have been feasible from an economic perspective using manually controlled machine tolls and processes.Like so many advanced technologies, NC was born in the laboratories of the Massachusetts Institute of Technology. The concept of NC was developed in the early 1950s with funding provided by the U.S. Air Force. In its earliest stages, NC machines were able to made straight cuts efficiently and effectively. However, curved paths were a problem because the machine tool had to be programmed to undertake a series of horizontal and vertical steps to produce a curve. The shorter the straight lines making up the steps, the smoother is the curve, Each line segment in the steps had to be calculated. This problem led to the development in 1959 of the Automatically Programmed Tools (APT) language. This is a special programming language for NC that uses statements similar to English language to define the part geometry, describe the cutting tool configuration, and specify the necessary motions. The development of the APT language was a major step forward in the further development from those used today. The machines had hardwired logic circuits. The instructional programs were written on punched paper, which was later to be replaced by magnetic plastic tape. A tape reader was used to interpret the instructions written on the tape for the machine. Together, all of this represented a giant step forward in the control of machine tools. However, there were a number of problems with NC at this point in its development. A major problem was the fragility of the punched paper tape medium. It was common for the paper tape containing the programmed instructions to break or tear during a machining process. This problem was exacerbated by the fact that each successive time a part was produced on a machine tool, the paper tape carrying the programmed instructions had to be rerun through the reader. If it was necessary to produce 100 copies of a given part, it was also necessary to run the paper tape through the reader 100 separate tines. Fragile paper tapes simply could not withstand the rigors of a shop floor environment and this kind of repeated use.This led to the development of a special magnetic plastic tape. Whereas the paper carried the programmed instructions as a series of holes punched in the tape, the plastic tape carried the instructions as a series of magnetic dots. The plastic tape was much stronger than the paper tape, which solved the problem of frequent tearing and breakage. However, it still left two other problems.The most important of these was that it was difficult or impossible to change the instructions entered on the tape. To made even the most minor adjustments in a program of instructions, it was necessary to interrupt machining operations and make a new tape. It was also still necessary to run the tape through the reader as many times as there were parts to be produced. Fortunately, computer technology became a reality and soon solved the problems of NC associated with punched paper and plastic tape.The development of a concept known as direct numerical control (DNC) solved the paper and plastic tape problems associated with numerical control by simply eliminating tape as the medium for carrying the programmed instructions. In direct numerical control, machine tools are tied, via a data transmission link, to a host computer. Programs for operating the machine tools are stored in the host computer and fed to the machine tool an needed via the data transmission linkage. Direct numerical control represented a major step forward over punched tape and plastic tape. However, it is subject to the same limitations as all technologies that depend on a host computer. When the host computer goes down, the machine tools also experience downtime. This problem led to the development of computer numerical control. 3. TurningThe engine lathe, one of the oldest metal removal machines, has a number of useful and highly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered.The engine lathe has been replaced in todays production shops by a wide variety of automatic lathes such as automatic of single-point tooling for maximum metal removal, and the use of form tools for finish on a par with the fastest processing equipment on the scene today.Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer must be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used.Turret Lathes Production machining equipment must be evaluated now, more than ever before, this criterion for establishing the production qualification of a specific method, the turret lathe merits a high rating. In designing for low quantities such as 100 or 200 parts, it is most economical to use the turret lathe. In achieving the optimum tolerances possible on the turrets lathe, the designer should strive for a minimum of operations.Automatic Screw Machines Generally, automatic screw machines fall into several categories; single-spindle automatics, multiple-spindle automatics and automatic chucking machines. Originally designed for rapid, automatic production of screws and similar threaded parts, the automatic screw machine has long since exceeded the confines of this narrow field, and today plays a vital role in the mass production of a variety of precision parts. Quantities play an important part in the economy of the parts machined on the automatic screw machine. Quantities less than on the automatic screw machine. The cost of the parts machined can be reduced if the minimum economical lot size is calculated and the proper machine is selected for these quantities.Automatic Tracer Lathes Since surface roughness depends greatly on material turned, tooling , and feeds and speeds employed, minimum tolerances that can be held on automatic tracer lathes are not necessarily the most economical tolerances.In some cases, tolerances of 0.05mm are held in continuous production using but one cut . groove width can be held to 0.125mm on some parts. Bores and single-point finishes can be held to 0.0125mm. On high-production runs where maximum output is desirable, a minimum tolerance of 0.125mm is economical on both diameter and length of turn.中文译文车床及车削加工1.车床车床主要是为了进行车外圆、车端面和镗孔等项工作而设计的机床。车削很少在其他种类的机床上进行,而且任何一种其他机床都不能像车床那样方便地进行车削加工。由于车床还可以用来钻孔和铰孔,车床的多功能性可以使工件在一次安装中完成几种加工。因此,在生产中使用的各种车床比任何其他种类的机床都多。车床的基本部件有:床身、主轴箱组件、尾座组件、溜板组件、丝杠和光杠。床身是车床的基础件。它能常是由经过充分正火或时效处理的灰铸铁或者球墨铁制成。它是一个坚固的刚性框架,所有其他基本部件都安装在床身上。通常在床身上有内外两组平行的导轨。有些制造厂对全部四条导轨都采用导轨尖朝上的三角形导轨(即山形导轨),而有的制造厂则在一组中或者两组中都采用一个三角形导轨和一个矩形导轨。导轨要经过精密加工以保证其直线度精度。为了抵抗磨损和擦伤,大多数现代机床的导轨是经过表面淬硬的,但是在操作时还应该小心,以避免损伤导轨。导轨上的任何误差,常常意味着整个机床的精度遭到破坏。主轴箱安装在内侧导轨的固定位置上,一般在床身的左端。它提供动力,并可使工件在各种速度下回转。它基本上由一个安装在精密轴承中的空心主轴和一系列变速齿轮(类似于卡车变速箱)所组成。通过变速齿轮,主轴可以在许多种转速下旋转。大多数车床有812种转速,一般按等比级数排列。而且在现代机床上只需扳动24个手柄,就能得到全部转速。一种正在不断增长的趋势是通过电气的或者机械的装置进行无级变速。由于机床的精度在很大程度上取决于主轴,因此,主轴的结构尺寸较大,通常安装在预紧后的重型圆锥滚子轴承或球轴承中。主轴中有一个贯穿全长的通孔,长棒料可以通过该孔送料。主轴孔的大小是车床的一个重要尺寸,因此当工件必须通过主轴孔供料时,它确定了能够加工的棒料毛坯的最大尺寸。尾座组件主要由三部分组成。底板与床身的内侧导轨配合,并可以在导轨上作纵向移动。底板上有一个可以使整个尾座组件夹紧在任意位置上的装置。尾座体安装在底板上,可以沿某种类型的键槽在底板上横向移动,使尾座能与主轴箱中的主轴对正。尾座的第三个组成部分是尾座套筒。它是一个直径通常大约在5176mm(23英寸)之间的钢制空心圆柱体。通过手轮和螺杆,尾座套筒可以在尾座体中纵向移入和移出几个英寸。车床的规格用两个尺寸表示。第一个称为车床的床面上最大加工直径。这是在车床上能够旋转的工件的最大直径。它大约是两顶尖连线与导轨上最近点之间距离的两倍。第二个规格尺寸是两顶尖之间的最大距离。车床床面上最大加工直径表示在车床上能够车削的最大工件直径,而两顶尖之间的最大距离则表示在两个顶尖之间能够安装的工件的最大长度。普通车床是生产中最经常使用的车床种类。它们是具有前面所叙的所有那些部件的重载机床,并且除了小刀架之外,全部刀具的运动都有机动进给。它们的规格通常是:车床床面上最大加工直径为305610mm(1224英寸);但是,床面上最大加工直径达到1270mm(50英寸)和两顶尖之间距离达到3658mm的车床也并不少见。这些车床大部分都有切屑盘和一个安装在内部的冷却液循环系统。小型的普通车床车床床面最大加工直径一般不超过330mm(13英寸)-被设计成台式车床,其床身安装在工作台或柜子上。虽然普通车床有很多用途,是很有用的机床,但是更换和调整刀具以及测量工件花费很多时间,所以它们不适合在大量生产中应用。通常,它们的实际加工时间少于其总加工时间的30%。此外,需要技术熟练的工人来操作普通车床,这种工人的工资高而且很难雇到。然而,操作工人的大部分时间却花费在简单的重复调整和观察切屑过程上。因此,为了减少或者完全不雇用这类熟练工人,六角车床、螺纹加工车床和其他类型的半自动和自动车床已经很好地研制出来,并已经在生产中得到广泛应用。2.数字控制先进制造技术中的一个基本的概念是数字控制(NC)。在数控技术出现之前,所有的机床都是由人工操纵和控制的。在与人工控制的机床有关的很多局限性中,操作者的技能大概是最突出的问题。采用人工控制是,产品的质量直接与操作者的技能有关。数字控制代表了从人工控制机床走出来的第一步。数字控制意味着采用预先录制的、存储的符号指令来控制机床和其他制造系统。一个数控技师的工作不是去操纵机床,而是编写能够发出机床操纵指令的程序。对于一台数控机床,其上必须安有一个被称为阅读机的界面装置,用来接受和解译出编程指令。发展数控技术是为了克服人类操作者的局限性,而且它确实完成了这项工作。数字控制的机器比人工操纵的机器精度更高、生产出零件的一致性更好、生产速度更快、而且长期的工艺装备成本更低。数控技术的发展导致了制造工艺中其他几项新发明的产生: 电火花加工技术、激光切割、电子束焊接 数字控制还使得机床比它们采用有人工操的前辈们的用途更为广泛。一台数控机床可以自动生产很多类的零件,每一个零件都可以有不同的和复杂的加工过程。数控可以使生产厂家承担那些对于采用人工控制的机床和工艺来说,在经济上是不划算的产品生产任务。同许多先进技术一样,数控诞生于麻省理工学院的实验室中。数控这个概念是50年代初在美国空军的资助下提出来的。在其最初的价段,数控机床可以经济和有效地进行直线切割。然而,曲线轨迹成为机床加工的一个问题,在编程时应该采用一系列的水平与竖直的台阶来生成曲线。构成台阶的每一个线段越短,曲线就越光滑。台阶中的每一个线段都必须经过计算。在这个问题促使下,于1959年诞生了自动编程工具(APT)语言。这是一个专门适用于数控的编程语言,使用类似于英语的语句来定义零件的几何形状,描述切削刀具的形状和规定必要的运动。APT语言的研究和发展是在数控技术进一步发展过程中的一大进步。最初的数控系统下今天应用的数控系统是有很大差别的。在那时的机床中,只有硬线逻辑电路。指令程序写在穿孔纸带上(它后来被塑料带所取代),采用带
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:I型软 管夹冲压装配工艺设计及部分模具设计【11张CAD图纸+毕业答辩论文】【冲压模具】
链接地址:https://www.renrendoc.com/p-443037.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!