SPSS实现一元线性回归分析实例.docx_第1页
SPSS实现一元线性回归分析实例.docx_第2页
SPSS实现一元线性回归分析实例.docx_第3页
SPSS实现一元线性回归分析实例.docx_第4页
SPSS实现一元线性回归分析实例.docx_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SPSS实现一元线性回归分析实例2009-12-14 15:311、准备原始数据。为研究某一大都市报开设周日版的可行性,获得了34种报纸的平日和周日的发行量信息(以千为单位)。数据如图1所示。SPSS17.0 图12、判断是否存在线性关系。制作直观散点图:(1)SPSS:菜单Analyze/Regression/linear Regression,如图2所示: 图2(2)打开对话框如图3 图3图3中,Dependent是因变量,Independent是自变量,分别将左栏中的sunday选入因变量,daily选入自变量,newspaper作为标识标签选入case labels.(3)点击图3对话框中的plots按钮,如图4所示: 图4将因变量DEPENTENT 选入Y:,自变量 ZPRED 选入X: continue 返回上级对话框。单击主对话框OK.便生成散点图如图5所示: 图5从以上散点图可看出,二者变量之间关系趋势呈线性关系。2、回归方程菜单Analyze/Regression/linear Regression,在图3对话框的右边单击statistics如图6所示: 图6regression coefficient回归系数,estimates估计值,confidence intervals level:95%置信区间,model fit拟合模型。点击continue返回主对话框,单击OK.结果如图7、图8所示: 图7图7中第一个图是变量的输入与输出,从图下的提示可知所有变量均输入与输出,没有遗漏。图7中的第二图是模型总和R值,R平方值,R调整后的平方值,及标准误。 图8图8中第一图为方差统计图,包括回归平方和,自由度,方程检验F值及P值。图8第二图为回归参数图,从图中可知,constant为回归方程截距,即13.836,回归系数为1.340,标准误分别为:35.804和0.071,及t检验值和95%的置信区间的最大值和最小值。因此回归方程可表示为:Y=1.34X+13.836。X因变量,即数据表中的daily,Y是因变量,即数据表中的sunday.SPSS实现一元线性回归分析实例2009-12-14 15:311、准备原始数据。为研究某一大都市报开设周日版的可行性,获得了34种报纸的平日和周日的发行量信息(以千为单位)。数据如图1所示。SPSS17.0 图12、判断是否存在线性关系。制作直观散点图:(1)SPSS:菜单Analyze/Regression/linear Regression,如图2所示: 图2(2)打开对话框如图3 图3图3中,Dependent是因变量,Independent是自变量,分别将左栏中的sunday选入因变量,daily选入自变量,newspaper作为标识标签选入case labels.(3)点击图3对话框中的plots按钮,如图4所示: 图4将因变量DEPENTENT 选入Y:,自变量 ZPRED 选入X: continue 返回上级对话框。单击主对话框OK.便生成散点图如图5所示: 图5从以上散点图可看出,二者变量之间关系趋势呈线性关系。2、回归方程菜单Analyze/Regression/linear Regression,在图3对话框的右边单击statistics如图6所示: 图6regression coefficient回归系数,estimates估计值,confidence intervals level:95%置信区间,model fit拟合模型。点击continue返回主对话框,单击OK.结果如图7、图8所示: 图7图7中第一个图是变量的输入与输出,从图下的提示可知所有变量均输入与输出,没有遗漏。图7中的第二图是模型总和R值,R平方值,R调整后的平方值,及标准误。 图8图8中第一图为方差统计图,包括回归平方和,自由度,方程检验F值及P值。图8第二图为回归参数图,从图中可知,constant为回归方程截距,即13.836,回归系数为1.340,标准误分别为:35.804和0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论