江苏省扬中市同德中学八年级数学下册 11.1 反比例函数学案(无答案)(新版)苏科版.doc_第1页
江苏省扬中市同德中学八年级数学下册 11.1 反比例函数学案(无答案)(新版)苏科版.doc_第2页
江苏省扬中市同德中学八年级数学下册 11.1 反比例函数学案(无答案)(新版)苏科版.doc_第3页
江苏省扬中市同德中学八年级数学下册 11.1 反比例函数学案(无答案)(新版)苏科版.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11.1 反比例函数 班级 姓名 【学习目标】1 理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式。3. 会求简单实际问题中反比例函数解析式.【学习重点、难点】重点 理解和领会反比例函数的概念。难点 反比例函数定义的应用。【学习过程】一、课前预习与导学:1什么是反比例关系? 2什么是函数关系? 3. (k0)叫_函数.,的取值范围是_4已知三角形的面积是定值s,则三角形的高h与底a的函数关系式是h =_,这时h是a的_二、课堂学习研讨1汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题: 你能用含有v的代数式表示t吗? 利用(1)的关系式完成下表:随着速度的变化,全程所用时间发生怎样的变化?v/(km/h)608090100120t/h 速度v是时间t的函数吗?为什么? 2用函数关系式表示下列问题中两个变量之间的关系: 一个面积是 的长方形的长a(m)随宽b(m)的变化而变化,则a关于b的关系式为.京沪线铁路全程为463 km,某列车平均速度为v(kmh),全程运行时间为t(h),则v关于t的关系式为 已知三角形的面积s是常数,它的底边长y与底边上的高x之间的关系式为实数m与n的积是200,m关于n的关系式为互动探究:(1)这些函数关系式与我们以前学习的正比例函数关系式有什么不同? (2)它们有一些什么共同特征? (3)你能归纳出反比例函数的概念吗? (4)反比例函数的定义: 反比例函数自变量取值范围: 3.例题:例1下列关系式中y是x的反比例函数吗?如果是,比例系数k的值是多少? 1 2. 3. 4. 练习1:下列关系式中y是x的反比例函数的是:1 2. 3. 4. 5. 6.例2若函数 是反比例函数求出m的值并写解析式.练习2:当a= 时,函数是反比例函数?例3若y与x成反比例,且x3时,y7,则y与x的函数关系式为.练习3:反比例函数(k0)的图象经过(1,3),则k的值是 。三、反思与心得: 四、课堂测试 1某住宅小区要种植一个面积为1000 的矩形草坪,草坪长为 y m,宽为 x m,则 y关于 x 的关系式为 ;它是 函数。2如果反比例函数的图象经过(1,2),那么这个反比例函数的解析式为 3若函数是反比例函数,那么正比例函数的图象经过第几象限? 4. 函数 ,当m=_时,它是正比例函数,当m=_时,它是反比 例函数. 5. 举例说一说可以表示的实际意义.五、课后作业1写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数. 如果是,指出比例系数k的值.(1)底边为5cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)某村有耕地面积200ha,人均占有耕地面积y(ha)随人口数量x(人)的变化而变化;(3)一个物体重120n,物体对地面的压强p(n/m2)随该物体与地面的接触面积s(m2)的变化而变化.2下列哪些关系式中的y是x的反比例函数?如果是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论