排列组合专题训练.doc_第1页
排列组合专题训练.doc_第2页
排列组合专题训练.doc_第3页
排列组合专题训练.doc_第4页
排列组合专题训练.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

排列组合专项训练【基本知识点】1.分类计数和分步计数原理的概念2排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同) 按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列3排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从 个元素中取出元素的排列数,用符号表示4排列数公式:()5.阶乘:表示正整数1到的连乘积,叫做的阶乘规定6排列数的另一个计算公式:= 7.组合概念:从个不同元素中取出个元素并成一组,叫做从个不同元素中取 出个元素的一个组合8组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个 不同元素中取出个元素的组合数用符号表示9.组合数公式: =10.组合数的性质1:规定:;11.组合数的性质2:+ Cn0+Cn1+Cnn=2n【方法策略应对】一、可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?二、相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。.高考资源网 【例2】五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有 【例3】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 288 C. 216 D. 96 三、相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例4】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 四、元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。【例5】 2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( ) 高考资源网 A. 36种 B. 12种 C. 18种 D. 48种五、多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。高【例6】(1) 6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )A、36种 B、120种 C、720种 D、1440种(2)把15人分成前后三排,每排5人,不同的排法种数为( )(A)(B) (C)(D) (3)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?六、定序问题缩倍法(等几率法):在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.【例7】.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是 。【例8】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有多少种不同的插法?高考资源网 【例9】将A、B、C、D、E、F这6个字母排成一排,若A、B、C必须按A在前,B居中,C在后的原则(A、B、C允许不相邻),有多少种不同的排法?七、标号排位问题(不配对问题) 把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.【例10】:同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则4张贺年卡不同的分配方式共有( ) (A)6种(B)9种(C)11种(D)23种 八、不同元素的分配问题(先分堆再分配):注意平均分堆的算法【例11】 有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?高考(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本;(3)分成每组都是2本的三个组;(4)分给甲、乙、丙三人,每个人2本;(5)分给5人每人至少1本。九、相同元素的分配问题隔板法:【例12】:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有多少种不同的放法?十、多面手问题( 分类法-选定标准) 【例13】:有11名外语翻译人员,其中5名是英语译员,4名是日语译员,另外两名是英、日语均精通,从中找出8人,使他们可以组成翻译小组,其中4人翻译英语,另4人翻译日语,这两个小组能同时工作,问这样的8人名单可以开出几张? 十一、走楼梯问题 (分类法与插空法相结合)【例14】 小明家住二层,他每次回家上楼梯时都是一步迈两级或三级台阶。已知相邻楼层之间有16级台阶,那么小明从一层到二层共有多少种不同的走法?十二、排数问题(注意数字“0”)高考资源网 【例15】(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A、210种 B、300种 C、464种 D、600种十三、染色问题:涂色问题的常用方法有:(1)可根据共用了多少种颜色分类讨论;(2)根据相对区域是否同色分类讨论;高考资源网 (3)将空间问题平面化,转化成平面区域涂色问题。【例16】如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)十四、几何中的排列组合问题:【例17】 已知直线(是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有 条。【高考习题精粹】一、选择题:1、(1985年全国理)用1,2,3,4,5这五个数字,可以组成比20000大,并且百位数不是数字3的没有重复数字的五位数,共有( )(A)96个 (B)78个 (C)72个 (D)64个2、(1988年全国理)假设在200件产品中有3件次品,现在从中任意抽取5件,其中至少有2件次品的抽法有( )(A)种 (B)种(C)种 (D)种3、(1989年全国理)由数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数共有( )(A)60个 (B)48个 (C)36个 (D)24个4、(1990年全国理)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有(A)24种 (B)60种 (C)90种 (D)120种5、(1991年全国理)从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有 ( )(A) 140种(B) 84种(C) 70种(D) 35种6、(1993年全国理)将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有( )(A) 6种(B) 9种(C) 11种(D) 23种7、(1994年全国理)有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担从10人中选派4人承担这三项任务,不同的选法共有( )(A) 1260种(B) 2025种(C) 2520种(D) 5040种8、(1995年全国理)用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共( )(A) 24个(B) 30个(C) 40个(D) 60个9、(1997年全国理)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有( )(A) 150种(B) 147种(C) 144种(D) 141种10、(1998年全国理)3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士。不同的分配方法共有A90种 B180种 C207种 D540种11、(2002年全国理)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A)8种(B)12种(C)16种(D)20种12、(2007年全国理)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( )A40种B60种C100种D120种13、(2010年全国理)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A)12种 (B)18种 (C)36种 (D)54种13、(2012年全国理)将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有( )种 种 种 种14、(2014年全国理)有6名男医生、5名女医生,从中选出2名男医生、1名女 医生组成一个医疗小组,则不同的选法共有( )A60种 B70种 C75种 D150种 15、(2013山东理)10.用十个数字,可以组成有重复数字的三位数的个数为A.B. C. D.16、(2013福建理)5.满足,且关于的方程有实数解的有序数对的个数为( )A. 14 B. 13 C. 12 D. 10 17、(2012山东卷)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为() A232 B252 C472 D48418、(2012陕西卷)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A10种 B15种 C20种 D30种19、(2012辽宁卷)一排9个座位坐了3个三口之家若每家人坐在一起,则不同的坐法种数为()A33! B3(3!)3 C(3!)4 D9!20、(2012北京卷)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A24 B18 C12 D621、(2012安徽卷)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A1或3 B1或4 C2或3 D2或422、(2012四川卷)方程ayb2x2c中的a,b,c3,2,0,1,2,3,且a,b,c互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A60条 B62条 C71条 D80条23、(2012浙江卷)若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A60 B63 C65 D6624、(2011浙江卷)有5本不同的书,其中语文书2本,数学书2本,物理书1本若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率A B C D25、(2010山东卷理)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()(A)36种(B)42种(C)48种(D)54种26、(2010天津卷理)如图,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色。则不同的涂色方法共有()(A) 288种 (B)264种 (C) 240种 (D)168种27、(2010湖北卷理)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是() A 152 B. 126 C. 90 D. 5428、(2010湖南卷理)在某种信息传输过程中,用4个数字的一个排列(数字也许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A10 B.11 C.12 D.1529、(2010四川卷理)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()(A)72 (B)96 (C) 108 (D)144 w_w_w.30、(2010年高考北京卷理科4)8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为()(A) (B) (C) (D) 31、(2010年高考重庆市理科9)某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()(A) 504种(B) 960种(C) 1008种(D) 1108种32、(2010年高考重庆卷文科10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有()来源:Z。xx。k.Com(A)30种 (B)36种(C)42种 (D)48种33、(2009广东卷理)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 () A. 36种 B. 12种 C. 18种 D. 48种34、(2009北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( ) A324 B328 C360 D64835、(2009湖北卷理)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为() 36、(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是() A. 60 B. 48 C. 42 D. 3637、(2009辽宁卷理)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)70种 (B) 80种 (C) 100种 (D)140种 38、(2009湖南卷理)从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位() A 85 B 56 C 49 D 28 39、(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是()A. 360 B. 188 C. 216 D. 96 DBCA40、(2008全国一)如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A96 B84 C60 D4841、(2008安徽)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中 抽2 人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A B CD 42、(2008湖北)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A. 540 B. 300 C. 180 D. 15043、(2008福建)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为()A.14B.24C.28D.4844、(2008辽宁)一生产过程有4道工序,每道工序需要安排一人照看现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A24种 B36种 C48种 D72种45、(2008海南)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。不同的安排方法共有( )A. 20种B. 30种C. 40种D. 60种46、(2007北京理)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()1440种960种720种480种47、(2007四川理)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A)288个(B)240个(C)144个(D)126个48、(2007福建)某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“”到“”共个号码公司规定:凡卡号的后四位带有数字“”或“”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为() 49、(2006北京)在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()(A)36个 (B)24个 (C)18个 (D)6个 50、(2006福建)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()(A)108种 (B)186种 (C)216种 (D)270种51、(2006湖南)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种 B.36种 C.42种 D.60种52、(2006山东)已知集合A=5,B=1,2,C=1,3,4,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为(A)33 (B) 34 (C) 35 (D)3653、(2006天津)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A10种B20种C36种 D52种54、(2006重庆)将5名实习教师分配到高一年级的个班实习,每班至少名,最多名,则不同的分配方案有()(A)种(B)种 (C)种(D)种55、(山东省济宁市2010年3月高三一模试题理科)从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有( )A36种B30种C42种D60种56、(山东省聊城市2010 年 高 考 模 拟数学试题理)从甲、乙、丙、丁四名同学中选出三名同学,分别参加三个不同科目的竞赛,其中甲同学必须参赛,不同的参赛方案共有( )A24种B18种C21种D9种57、(山东省日照市2010年3月高三一模理科)某校园有一椭圆型花坛,分成 如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有( )(A)48种 (B)36种 (C)30种 (D)24种58、(湖北省荆州市2010年3月高中毕业班质量检查理科)将5名大学生分配到3个乡镇去任职,每个乡镇至少一名,不同的分配方案有( )种 59、(湖北省八校2010 届 高 三 第 二 次 联 考理科)甲、乙、丙、丁、戌5人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( )A72种B54种C36种D24种60、(湖北省八校2010 届 高 三 第 二 次 联 考文科)甲、乙、丙等五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( )A72种B52种C36种D24种61、(湖北省襄樊市2010年3月高三调研统一测试文理科)某班要从6名同学中选出4人参加校运动会的4100m接力比赛,其中甲、乙两名运动员必须入选,而且甲、乙两人中必须有一个人跑最后一棒,则不同的安排方法共有( )A24种B72种C144种D360种62、(北京市丰台区2010年4月高三年级第二学期统一考试理科)从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A36B48C52D5463、(北京市崇文区2010年4月高三年级第二学期统一练习理科)2位男生和3位女生共5位同学站成一排若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为( ) (A)36 (B)42 (C) 48 (D) 6064、(2010年4月北京市西城区高三抽样测试理科)某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为( )A B C D 65、(山东省乐陵一中2009届高三考前回扣)用4种不同的颜色为正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法有( )种。A24 B48 C72 D9666、 (2009届高考数学二轮冲刺专题测试)某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有( )A84种B98种C112种D140种67、(2009届高考数学二轮冲刺专题测试)用4种不同的颜色为正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法有( )种。A24 B48 C72 D9668、( 2009届高考数学二轮冲刺专题测试)某小组有4人,负责从周一至周五的班级值日,每天只安排一人,每人至少一天,则安排方法共有( )A480种 B300 C240种 D12069、( 2009届高考数学二轮冲刺专题测试)9人排成33方阵(3行,3 列),从中选出3人分别担任队长副队长纪律监督员,要求这3人至少有两人位于同行或同列,则不同的任取方法数为( )A 78 B 234 C468 D50470、(2009届高考数学二轮冲刺专题测试)4名不同科目的实习教师被分配到三个班级,每班至少一人的不同分法有( )A.144 种 B .72种 C. 36 种 D. 24种71、( 2009届高考数学二轮冲刺专题测试)从5男4女中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,不同的分派方法有( )A100种 B400种 C480种 D2400种72、(2009届高考数学二轮冲刺专题测试)在如图所示的10块地上 选出6块种 植A1、A2、A6等六个不同品种的蔬菜,每块种植一种不同品种蔬菜,若A1、A2、A3必须横向相邻种在一起,A4、A5横向、纵向都不能相邻种在一起,则不同的种植方案有( )A3120 B3360C5160 D552073、( 2009届高考数学二轮冲刺专题测试)某电影院第一排共有9个座位,现有3名观众前来就座,若他们每两人都不能相邻且要求每人左右至多只有两个空位,那么不同的做法种数共有( )A18种 B36种 C42种 D56种74、(江苏省启东中学高三综合测试二)在平面直角坐标系中,x轴正半轴上有5个点, y轴正半轴有3个点,将x 轴上这5个点和y轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有( )A.30个 B.35个 C.20个 D.15个75、(江苏省启东中学高三综合测试三)有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两倍同学要站在一起,则不同的站法有( )A240种B192种C96种D48种76、(安徽省皖南八校2008届高三第一次联考)将、四个球放入编号为,的三个盒子中,每个盒子中至少放一个球且、两个球不能放在同一盒子中,则不同的放法有();77、(江西省五校2008届高三开学联考)如图所示是2008年北京奥运会的会徽,其中的“中国印” 主体由四个互不连通的色块构成,可以用线段在不穿越其他色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有( ) A8种 B12种 C16种 D20种78、(四川省巴蜀联盟2008届高三年级第二次联考)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )A30种B90种 C180种D270种79、(四川省成都市新都一中高2008级一诊适应性测试)某单位要邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有( )A84种B98种C112种D140种80、(四川省成都市新都一中高2008级12月月考)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )A、56个B、57个C、58个D、60个81、(安徽省巢湖市2008届高三第二次教学质量检测)用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间,这样的五位数的个数有( )A.48个 B.12个 C.36个 D.28个82、(北京市崇文区2008年高三统一练习一)某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共有( )A15种B12种C9种D6种83、(北京市东城区2008年高三综合练习一)某高校外语系有8名奥运会志愿者,其中有5名男生,3名女生,现从中选3人参加某项“好运北京”测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( )A45种B56种C90种D120种84、(北京市东城区2008年高三综合练习二)某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有( )A120种B48种C36种D18种85、(北京市海淀区2008年高三统一练习一)2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有( )(A)36种(B)108种(C)216种(D)432种86、(北京市西城区2008年5月高三抽样测试)从5名奥运志愿者中选出3名,分别从事翻译、导游、保洁三项不同的工作,每人承担一项,其中甲不能从事翻译工作,则不同的选派方案共有( )A24种 B36种 C48种 D60种87、(北京市宣武区2008年高三综合练习一)编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( ) A 10种 B 20种 C 30种 D 60种88、(北京市宣武区2008年高三综合练习二)从1到10这是个数中,任意选取4个数,其中第二大的数是7的情况共有 ( ) A 18种 B 30种 C 45种 D 84种89、(东北三校2008年高三第一次联考)在一条南北方向的步行街同侧有8块广告牌,牌的底色可选用红、蓝两种颜色,若只要求相邻两块牌的底色不都为红色,则不同的配色方案共有 ( )A55 B56 C46 D4590、(福建省南靖一中2008年第四次月考)5名奥运火炬手分别到香港,澳门、台湾进行奥运知识宣传,每个地方至少去一名火炬手,则不同的分派方法共有( )A. 150种 B. 180种 C. 200种 D. 280种91、(福建省莆田一中20072008学年上学期期末考试卷)为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,12名参赛同学中有4人获奖,且这4人来自3人不同的代表队,则不同获奖情况种数共有( ) ABCD92、(福建省泉州一中高2008届第一次模拟检测)2008年春节前我国南方经历了50年一遇的罕见大雪灾,受灾人数数以万计,全国各地都投入到救灾工作中来,现有一批救灾物资要运往如右图所示的灾区,但只有4种型号的汽车可以进入灾区,现要求相邻的地区不要安排同一型号的车进入,则不同的安排方法有 ( )A112种 B 120种 C 72种 D 56种93、(福建省仙游一中2008届高三第二次高考模拟测试)有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同的坐法种数是( )A.234 B.346 C.350 D.36394、(甘肃省河西五市2008年高三第一次联考)某次文艺汇演,要将A、B、C、D、E、F这六个不同节目编排成节目单,如下表:序号123456节目如果A、B两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有 ( )A 192种B 144种C 96种D 72种95、(广东省汕头市潮阳一中2008年高三模拟)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行 线面组”的个数是( )A60B48C36D2496、(广东省汕头市澄海区2008年第一学期期末考试)ABC内有任意三点不共线的2005个点,加上三个顶点,共2008个点,把这2008个点连线形成互不重叠(即任意两个三角形之间互不覆盖)的小三角形,则一共可以形成小三角形的个数为( )A4008 B.4009 C.4010 D.401197、(广东省四校联合体第一次联考)现有甲、已、丙三个盒子,其中每个盒子中都装有标号分别为1、2、3、4、5、6的六张卡片,现从甲、已、丙三个盒子中依次各取一张卡片使得卡片上的标号恰好成等差数列的取法数为 ( )1416 1820 98、(贵州省贵阳六中、遵义四中2008年高三联考)五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( )种 种 种 种99、(安徽省合肥市2008年高三年级第一次质检)有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是( )A18 B26 C29D58100、(河北省正定中学2008年高三第五次月考)甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁两公司各承包2项,共有承包方式 ( )A.3360 种 B.2240种 C.1680种 D.1120种101、(河南省开封市2008届高三年级第一次质量检)两位到北京旅游的外国游客要与2008奥运会的吉祥物福娃(5个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有( )A1440B960C720D480102、(河南省濮阳市2008年高三摸底考试)设有甲、乙、丙三项任务,甲需要2人承担,乙、丙各需要1人承担,现在从10人中选派4人承担这项任务,不同的选派方法共有( ) A1260种 B2025种 C2520种 D5040种103、(河南省许昌市2008年上期末质量评估)5个大小都不同的实数,按如图形式排列,设第一行中的最大数为a,第二行中的最大数为b,则满足ab的所有排列的个数为( )A144 B72 C36 D24104、(湖北省八校高2008第二次联考)某电视台连续播放6个广告,其中有三个不同的商业广告,两个不同的奥运宣传广告,一个公益广告. 要求最后播放的不能是商业广告,且奥运宣传广告与公益广告不能连续播放,两个奥运宣传广告也不能连续播放,则不同的播放方式有( )A48种 B98种 C108种 D120种105、若xA则A,就称A是伙伴关系集合,集合M=1,0,1,2,3,4的所有非空子集中,具有伙伴关系的集合的个数为( ) A15 B16 C28 D25106、(湖北省黄冈市2007年秋季高三年级期末考试)在的边上有、四点,边上有、共9个点,连结线段,如果其中两条线段不相交,则称之为一对“和睦线”,则共有:( )A 60 B 80 C 120 D 160107、(江西省鹰潭市2008届高三第一次模拟)如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( )A. 8种 B. 12种 C. 16种D. 20种108、(湖南省长沙市一中2008届高三第六次月考)将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只放入2个白球和2个黑球,则所有不同的放法种数为( )A3B6C12D18109、(黄家中学高08级十二月月考)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )A16种 B36种 C42种 D60种110、(吉林省吉林市2008届上期末)有5名学生站成一列,要求甲同学必须站在乙同学的后面(可以不相邻),则不同的站法有( )A120种B60种C48种D150种111、(吉林省实验中学2008届高三年级第五次模拟考试)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有( )A168个 B174个 C232个 D238个112、(山东省实验中学2008届高三第三次诊断性测试)四面体的顶点和各棱中点共有10个点,在其中取4个不共面的点,不同的取法共有( )A150种 B147种 C141种 D142种113、(山东省郓城一中2007-2008学年第一学期期末考试)用4种不同的颜色为正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法有 种。( )A24 B48 C72 D96114、(山西大学附中2008届二月月考)若国际研究小组由来自3个国家的20人组成,其中A国10人,B国6人,C国4人,按分层抽样法从中选10人组成联络小组,则不同的选法有( )种. A B C D二、填空题:115、(2010年高考浙江卷17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复。若上午不测“握力”项目,下午不测“台阶”项目,其余项目上下午都各测试一人,则不同的安排方式共有 种。116、(2010年高考江西卷理科14)将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有 种。117、(2010年高考江西卷文科14)将5位志愿者分成3组,其中两组各2人,另一组1人,分赴世博会的三个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论