计算书.doc

[T0050]某11层10000平米框剪办公楼设计(建筑图结构图计算书)

收藏

压缩包内文档预览:(预览前20页/共100页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:443754    类型:共享资源    大小:3.15MB    格式:ZIP    上传时间:2015-06-25 上传人:小*** IP属地:福建
50
积分
关 键 词:
t0050 11 十一 平米 办公楼 设计 建筑 结构图 计算
资源描述:

目      录

目录·····························································1-1

第一章、中英文摘要···············································3-5

第二章、前言·····················································5-6

第三章、混凝土框-剪结构设计·  ··································6-6

第一节、框剪结构设计任务书····································6-7

第二节、结构布置及截面尺寸初步估算····························7-12

第三节、计算简图及刚度参数····································12-24

  第四节、竖向以及水平荷载计算··································24-33

  第五节、水平荷载作用效应分析··································33-44

第六节 竖向荷载作用下框剪结构内力计算·······················44-53

第七节、荷载效应组合·········································53-60

第八节、框剪梁柱截面设计及配筋计算····························60-66

第九节、现浇楼梯设计··········································66-73

第九节、楼板设计配筋··········································66-73

第十节、框剪结构片筏基础设计··································73-77

第四章、谢辞·····················································78-80

第五章、注释···················································· 80-80

第六章、参考文献·················································80-80

附录、专业英语翻译···············································81-95



                    第一章 中英文摘要

中文摘要

框架--剪力墙结构,也称为框剪结构,广泛应用于办公和公用高层建筑,也大量应用于高层旅馆设计,我的毕业设计是框架--剪力墙结构的高层办公楼设计。这种结构由框架梁柱形成自由灵活的空间,容易满足建筑功能的要求;同时又有一定数量的剪力墙,使得它具有很强的抗震能力,同时,剪力墙的设置,减少了在水平荷载作用下结构的侧移,避免砌体填充墙在地震中严重破坏和倒塌。所以,在地震区要采用框架结构时,宜优先选用框剪结构。最近四川汶川的大地震,损失严重,更能说明将结构做的完美的重要性。

   我的设计内容主要是结构设计,毕业设计是土木工程专业的必修课程,我的设计是办公楼设计,设计采用钢筋混凝土现浇框架--剪力墙结构,建筑层数为十一层,地上十层,地下一层,建筑总高度39.9 m,总建筑面积10174.32㎡,其中地下室占地面积为1017.47㎡。根据设计要求,设防烈度为7度,抗震等级为二级,设计中要考虑抗震设计。设计包括结构部分、楼梯、基础等。根据任务书定出各层平面图及平面布置。本方案主体结构为双向承重框架—剪力墙结构。在进行荷载计算和构件截面估算后,选取了一榀框架—剪力墙进行计算,计算内容包括框架梁、框架柱、剪力墙、连梁的截面尺寸的选取及线刚度的计算;恒载、活载、地震作用下梁端、柱端、剪力墙、连梁的弯矩、剪力的计算;框架、剪力墙、连梁的内力组合;框架梁柱配筋计算;楼梯配筋计算及基础设计。框架受力钢筋主要采用Ⅲ级钢筋,箍筋主要采用Ⅰ级钢筋,楼梯采用钢筋混凝土梁板式楼梯;由于上部结构荷载较大,地基土存在软弱层,基础采用钢筋混凝土筏板基础。整个方案设计基本符合设计和结构要求,具有一定的合理性。

通过对办公楼楼层平面图、剖面图、构造图的绘制和结构的设计,熟悉了设计的全过程,并能熟练应用AuToCAD、天正绘图软件等,并熟悉了一下PKPM的应用,掌握了结构设计计算的基本方法,创造性的完成了毕业设计任务。同时,对大学所学的专业知识和基本概念有了更深的理解,从而提高了分析和解决实际问题的能力。



关键词:

土木工程  钢筋混凝土结构  框架—剪力墙结构      筏板基础  恒载  活载  地震作用    荷载设计值  荷载效应   结构计算   概念设计



Abstract:

Framework - shear wall structure, also known as FRAME-SHEAR WALL structure, widely used in public office and high-rise building, also used in large high-rise hotel design, and mine is in this type.The type of this structure is flexible in space, and the building is easy to meet the demands ,and also a certain amount of shear walls, making it a strong earthquake capacity, while the shear wall set up, reducing the Level load structure under the sway, to avoid filling masonry wall in the quake severely damaged and collapsed. Therefore, in the earthquake zone to adopt the framework of the structure, to give priority optional FRAME-SHEAR WALL structure. Chuan Wenchuan four of the last major earthquake, serious damage, the structure will be better able to explain the importance of doing perfect.


I design the content is mainly structural design, civil engineering graduate design is a compulsory course, my office building design is design, design a framework of cast-in-place reinforced concrete - shear wall structure, building a 10 storeys to the ground 10 layer, a layer of the ground floor, building height of 39.9 m, a total construction area of 10174.32 square meters, which covers an area of the basement to 1017.47 square meters. According to the design requirements, the intensity of seven degree of security, seismic rating for the two, to consider the design of seismic design. Including the design of the structure of the stairs, the foundation. According to the mandate set of floor plans and layout of each floor. The programme for the two-way load-bearing structure of the main framework - shear wall structure. Load component in the calculation and estimates section, select a Pin framework - a shear wall, the calculation includes the framework of beams, columns, shear walls, even the size of the beam section and select the stiffness of the calculation; constant load , The live load, under earthquake Beam, column-, shear walls, and even beam the moment, shear the calculation; framework, shear walls, beam combination of internal forces; framework reinforced beams calculated reinforced staircases The basis of calculation and design. The framework of reinforced steel bars used mainly Ⅲ level, the main use of stirrups Ⅰ-class steel, reinforced concrete beams using the stairs plate staircase; larger load because of the upper structure, the existence of weak foundation soil layer, based on a reinforced concrete raft foundation. The basic design of the entire programme with the design and structural requirements, have a certain reasonable.

Through the office building floor plans, profiles, construction and structure of the plan is drawing the design, familiar with the design of the entire process, and can skillfully use AuToCAD, Tianzheng mapping software, and familiar with the application of the PKPM, mastered the structural design calculations The basic method, the completion of the graduate creative design task. At the same time, the study by the University of the basic concepts and expertise gained a deeper understanding, so as to enhance the analysis and the ability to solve practical problems.


Key word:

 Civil Engineering   Reinforced Concrete Structures   Framework - shear wall structure   Beam  Liang plate staircase    Raft foundation

dead load  Live load   Earthquake   Load design value   Load effect  Structural calculations  

????

第二章  前 言


高层建筑是近代经济发展和科学技术进步的产物。随着经济的腾飞,城市人口集中,用地紧张,以及商业竞争的激烈化,使相当多的办公楼、旅馆、医院、学校等向高层发展。

我在老师和同学的帮助下,设计了这一高层框架-剪力墙结构的办公楼,再次向各位老师和同学表示感谢,设计中难免会有很多不足之处,敬请老师多加指教。

谢谢



第三章 混凝土框剪结构设计


第一节 框剪结构设计任务书


1.工程名称:


集团高层办公楼

2.建设地点:

3.工程概况:

11层,平面尺寸为,主体高度为39.9m,手层层高为,其余层高为,地下室一层,层高。上部为框架-剪力墙结构,剪力墙门洞高为,内外围护墙均采用加气混凝土。

主要功能划分:本工程地下一层为车库,存储丙类以下物资,一层及十层为办公用房以及营业厅。

4.设计条件:

 抗震设防烈度为7度,场地类别为Ⅱ类,设计地震分组为第一组,基本风压为,地面粗糙度为B类,基本雪压为,

5.设计要求:

  选择合理的结构方案,进行结构布置,对该建筑进行横向抗震设计。


内容简介:
框-剪高层办公楼 专业: 土木工程 姓名: 学号: 指导教师: 时间: 目 录目录1-1第一章、中英文摘要3-5第二章、前言5-6第三章、混凝土框-剪结构设计 6-6第一节、框剪结构设计任务书6-7第二节、结构布置及截面尺寸初步估算7-12第三节、计算简图及刚度参数12-24 第四节、竖向以及水平荷载计算24-33 第五节、水平荷载作用效应分析33-44第六节 竖向荷载作用下框剪结构内力计算44-53第七节、荷载效应组合53-60第八节、框剪梁柱截面设计及配筋计算60-66第九节、现浇楼梯设计66-73第九节、楼板设计配筋66-73第十节、框剪结构片筏基础设计73-77第四章、谢辞78-80第五章、注释 80-80第六章、参考文献80-80附录、专业英语翻译81-95 第一章 中英文摘要中文摘要框架-剪力墙结构,也称为框剪结构,广泛应用于办公和公用高层建筑,也大量应用于高层旅馆设计,我的毕业设计是框架-剪力墙结构的高层办公楼设计。这种结构由框架梁柱形成自由灵活的空间,容易满足建筑功能的要求;同时又有一定数量的剪力墙,使得它具有很强的抗震能力,同时,剪力墙的设置,减少了在水平荷载作用下结构的侧移,避免砌体填充墙在地震中严重破坏和倒塌。所以,在地震区要采用框架结构时,宜优先选用框剪结构。最近四川汶川的大地震,损失严重,更能说明将结构做的完美的重要性。 我的设计内容主要是结构设计,毕业设计是土木工程专业的必修课程,我的设计是办公楼设计,设计采用钢筋混凝土现浇框架-剪力墙结构,建筑层数为十一层,地上十层,地下一层,建筑总高度39.9 m,总建筑面积10174.32,其中地下室占地面积为1017.47。根据设计要求,设防烈度为7度,抗震等级为二级,设计中要考虑抗震设计。设计包括结构部分、楼梯、基础等。根据任务书定出各层平面图及平面布置。本方案主体结构为双向承重框架剪力墙结构。在进行荷载计算和构件截面估算后,选取了一榀框架剪力墙进行计算,计算内容包括框架梁、框架柱、剪力墙、连梁的截面尺寸的选取及线刚度的计算;恒载、活载、地震作用下梁端、柱端、剪力墙、连梁的弯矩、剪力的计算;框架、剪力墙、连梁的内力组合;框架梁柱配筋计算;楼梯配筋计算及基础设计。框架受力钢筋主要采用级钢筋,箍筋主要采用级钢筋,楼梯采用钢筋混凝土梁板式楼梯;由于上部结构荷载较大,地基土存在软弱层,基础采用钢筋混凝土筏板基础。整个方案设计基本符合设计和结构要求,具有一定的合理性。通过对办公楼楼层平面图、剖面图、构造图的绘制和结构的设计,熟悉了设计的全过程,并能熟练应用AuToCAD、天正绘图软件等,并熟悉了一下PKPM的应用,掌握了结构设计计算的基本方法,创造性的完成了毕业设计任务。同时,对大学所学的专业知识和基本概念有了更深的理解,从而提高了分析和解决实际问题的能力。关键词:土木工程 钢筋混凝土结构 框架剪力墙结构 筏板基础 恒载 活载 地震作用 荷载设计值 荷载效应 结构计算 概念设计Abstract:Framework - shear wall structure, also known as FRAME-SHEAR WALL structure, widely used in public office and high-rise building, also used in large high-rise hotel design, and mine is in this type.The type of this structure is flexible in space, and the building is easy to meet the demands ,and also a certain amount of shear walls, making it a strong earthquake capacity, while the shear wall set up, reducing the Level load structure under the sway, to avoid filling masonry wall in the quake severely damaged and collapsed. Therefore, in the earthquake zone to adopt the framework of the structure, to give priority optional FRAME-SHEAR WALL structure. Chuan Wenchuan four of the last major earthquake, serious damage, the structure will be better able to explain the importance of doing perfect.I design the content is mainly structural design, civil engineering graduate design is a compulsory course, my office building design is design, design a framework of cast-in-place reinforced concrete - shear wall structure, building a 10 storeys to the ground 10 layer, a layer of the ground floor, building height of 39.9 m, a total construction area of 10174.32 square meters, which covers an area of the basement to 1017.47 square meters. According to the design requirements, the intensity of seven degree of security, seismic rating for the two, to consider the design of seismic design. Including the design of the structure of the stairs, the foundation. According to the mandate set of floor plans and layout of each floor. The programme for the two-way load-bearing structure of the main framework - shear wall structure. Load component in the calculation and estimates section, select a Pin framework - a shear wall, the calculation includes the framework of beams, columns, shear walls, even the size of the beam section and select the stiffness of the calculation; constant load , The live load, under earthquake Beam, column-, shear walls, and even beam the moment, shear the calculation; framework, shear walls, beam combination of internal forces; framework reinforced beams calculated reinforced staircases The basis of calculation and design. The framework of reinforced steel bars used mainly level, the main use of stirrups -class steel, reinforced concrete beams using the stairs plate staircase; larger load because of the upper structure, the existence of weak foundation soil layer, based on a reinforced concrete raft foundation. The basic design of the entire programme with the design and structural requirements, have a certain reasonable. Through the office building floor plans, profiles, construction and structure of the plan is drawing the design, familiar with the design of the entire process, and can skillfully use AuToCAD, Tianzheng mapping software, and familiar with the application of the PKPM, mastered the structural design calculations The basic method, the completion of the graduate creative design task. At the same time, the study by the University of the basic concepts and expertise gained a deeper understanding, so as to enhance the analysis and the ability to solve practical problems.Key word: Civil Engineering Reinforced Concrete Structures Framework - shear wall structure Beam Liang plate staircase Raft foundation dead load Live load Earthquake Load design value Load effect Structural calculations 第二章 前 言高层建筑是近代经济发展和科学技术进步的产物。随着经济的腾飞,城市人口集中,用地紧张,以及商业竞争的激烈化,使相当多的办公楼、旅馆、医院、学校等向高层发展。我在老师和同学的帮助下,设计了这一高层框架-剪力墙结构的办公楼,再次向各位老师和同学表示感谢,设计中难免会有很多不足之处,敬请老师多加指教。 谢谢 第三章 混凝土框剪结构设计第一节 框剪结构设计任务书1工程名称:集团高层办公楼2建设地点:3工程概况:11层,平面尺寸为,主体高度为39.9m,手层层高为,其余层高为,地下室一层,层高。上部为框架-剪力墙结构,剪力墙门洞高为,内外围护墙均采用加气混凝土。主要功能划分:本工程地下一层为车库,存储丙类以下物资,一层及十层为办公用房以及营业厅。4设计条件: 抗震设防烈度为7度,场地类别为类,设计地震分组为第一组,基本风压为,地面粗糙度为B类,基本雪压为,5设计要求: 选择合理的结构方案,进行结构布置,对该建筑进行横向抗震设计。100第二节 结构布置及截面尺寸初步估算 该建筑经过对建筑高度、使用要求、材料用量、抗震要求、造价等因素综合考虑后,宜采用钢筋混凝土框架-剪力墙结构。结构体系与结构布置如下图所示:标准层结构布置图见下页所示:标准层结构布置图高宽比: (最大高宽比) 满足要求。设防烈度为7度,现浇。结构抗震等级7度设防,高小于60m,框架三级,剪力墙二级。1 框架布置以及梁柱截面尺寸确定: 框架剪力墙结构应设计为双向抗侧力体系,框架应采用纵横双向梁柱刚结体系。 本设计中,框架梁柱的轴线重合在同一平面内。2 柱子截面尺寸初步估计: 根据抗震等级要求,查表确定轴压比限值,抗震等级与楼高,抗震烈度。楼高:m以上,二级,轴压比.(轴压比越高,柱子适性越差,抗震越差)根据柱子的轴压比估算柱子截面:(其中为分项系数1.2,:楼层数1 1.05 水平力使轴力增大系数S:柱子的承载轴面面积W:单位面积重量框架剪力墙结构1214kN/中柱:取边柱: 取 考虑到各柱子尺寸不宜相差太大,以及柱子抗侧移刚度有一定保证,因此初选柱子截面尺寸为: 边柱为 中柱为3 梁截面尺寸初估:() 横向框架梁跨度:梁高:取梁宽:取(横向框架梁)() 纵向框架梁跨度: 梁高:取梁宽:取(纵向框架梁)()非框架梁()连梁(剪力墙与柱子间)4 剪力墙数量的确定:(1) 位置确定: 布置原则:均匀、分散、对称、周边,楼电梯间四周,楼电梯间使楼面受大开洞的削弱,宜采用钢筋混凝土剪力墙加强。对称布置主要是为了避免和减少扭转对结构的不利影响。需要抗震设防的框架剪力墙结构,剪力墙宜双向布置。布置如图所示,剪力墙厚度为250mm(2) 数量确定 剪力墙截面面积与楼面面积之比按照2%-3%考虑,且纵横两个方向剪力墙截面面积应该大致相等,即纵横各应有:所以,满足要求. 综上,各种构件截面尺寸以及混凝土强度等级详见下表:楼层梁截面柱剪力墙厚混凝土等级纵向横向非框架梁连梁边柱中柱梁、板剪力墙柱110250500250700200400250400600600750750250C30C40板的厚度: 板的最小厚度不小于80mm,按照双向板跨度的1/50考虑,考虑到保证结构的整体性,初选h=100mm,顶层楼板取120mm。第三节 计算简图以及刚度参数 本工程仅给出主体结构横向在荷载作用下的受力计算以及截面设计。取轴的横向框架-剪力墙结构进行设计验算。刚度参数:总剪力墙的等效抗弯刚度:(1) 剪力墙类型的判别:本工程中横向剪力墙中W1、W2、W3无洞口,为整体剪力墙。(2) 剪力墙刚度计算时,可以考虑纵横墙间的共同工作。纵墙的一部分可以作为横墙的有效翼缘。每一侧的有效翼缘宽度可以取翼缘厚度的6倍、墙间距的一半和总高度的1/20中的最小值,且不大于至洞口边缘的距离。2W1类型的判别: 几何尺寸见下图: 有效翼缘宽度:取最小值为1300mm截面面积:形心位置:惯性矩:C40混凝土的弹性模量:则:(3) W2类型的判别:几何尺寸:有效翼缘宽度:取最小值为1500mm截面面积:形心位置:惯性矩:C40混凝土的弹性模量:则:(4) W3类型的判别:几何尺寸见下图:取最小值为1500mm截面面积:墙肢以及组合截面形心位置:组合截面惯性矩:连梁截面惯性矩、计算跨度、墙肢形心间距:29层:连梁截面积:计算跨度:连梁截面折算惯性矩:1层:连梁截面积:计算跨度:连梁截面折算惯性矩:则Ib的加权平均值:连梁计算跨度的加权平均值:洞口两侧墙肢形心间距:墙肢1的截面惯性矩:墙肢2的截面形心:剪力墙类型判别:属于整体小开口剪力墙等效刚度计算:经计算得,综上计算:总剪力墙的等效抗弯刚度为:总框架的抗推刚度1 普通框架 计算轴为例,说明普通框架的抗推刚度Cf计算,其余各轴框架柱的Cf值以汇总表格的形式给出:(1) 轴框架的几何尺寸如下图所示: 截面尺寸:KL21 KL22的梁截面尺寸:B E柱截面尺寸相同:D柱:柱的计算长度为:1层: 210层: 梁柱截面惯性矩Ib Ic梁截面惯性矩可以近似取矩形截面惯性矩的2倍:边柱B、E截面惯性矩:中柱截面惯性矩:最后计算各层边柱的抗推刚度轴的柱子的Cf值见下表:轴号层号ib(103kNm)轴左梁右梁ick=k/(2+k)=(0.5+k)/(2+k)h(m)DCfB156.70373.1250.7750.464.817.5284.09621056.703900.630.243.917.04166.46D156.70379.9178.5260.7650.4574.842.491203.96621056.70379.9219.7250.6220.2373.941.085160.23E179.973.1251.0930.5154.821.8894.14821079.9900.8880.3073.919.61485.015 轴柱子的Cf的计算表:轴号层号ib(103kNm)轴左梁右梁ick=k/(2+k)=(0.5+k)/(2+k)h(m)DCfB156.70373.1250.7750.464.817.5284.09621056.703900.630.243.917.04166.46D156.70379.97312518680.6124.842.491203.96621056.70379.99000015180.2373.941.085160.23E179.973.1251.0930.5154.821.8894.14821079.9900.8880.3073.919.61485.015综上统计如下:一、总框架的抗推刚度横向普通框架柱和壁式框架柱的侧移刚度D值和Cf值的计算结果汇总于下:普通框架及壁式框架的D值和Cf值汇总表柱子位置数量D(103kN/m)Cf(103kN)1层210层1层210层普通框架汇总641.229 620.668 3025.772 2462.673 W4左边柱1 40.380 31.246 193.824 121.859 W4中柱11 110.365 70.662 529.752 275.582 W4中柱21 110.423 70.830 530.030 276.237 W4右边柱1 46.120 29.116 221.376 113.552 948.517 822.522 4500.754 3249.904 总框架抗推刚度Cf可以由各层普通框架、壁式框架抗推刚度之和的加权平均值求出: Cf =3400.382kN 二、总连梁的等效剪切刚度C 本工程中有连梁LL12列,LL22列,KL31列横向各列连梁的平均约束弯矩及总连梁的等效剪切刚度C汇总于下: 横向连梁剪切刚度汇总表编号数量Cb(104kN)LL1276.483LL2270.914KL3190.244237.641三、主体结构的刚度特征值在计算体系基本周期时,认为体系是处于弹性阶段工作,按下式计算: =H=39.9=2.32在体系协同内力计算时,总连梁等效剪切刚度Cb可乘以考虑弹塑性变形影响的刚度折减系数,根据规定,折减系数不宜小于0.55,本工程取0.55=H=39.9=2.09第四节 竖向以及水平荷载计算一、竖向荷载计算各种构件的荷载标准值:板荷载(屋面荷载) 层面(上人屋面)活载: 2.0kN/m2恒载: 20厚1:2水泥砂浆抹面 0.020200.4KN/m2 3厚APP改性沥青防水层 0.05 KN/m2 20厚1:3水泥砂浆找平层 0.020200.4KN/m2 80厚聚苯乙烯保温层 0.50.080.04 KN/m 1:10水泥珍珠岩找坡 40.030.12 KN/m2 2厚APP改性沥青隔气层 0.05 KN/m2 20厚1:3水泥砂浆找平层 200.020.4 KN/m2 120厚砼楼板 250.122.55KN/m2 15厚混合砂浆抹面 170.0150.255 KN/m2 屋面恒载小计: 6.136 KN/m2(办公楼) 活载: 2.0kN/m2(办公楼) 恒载:30厚水磨石地面 0.65kN/ m2100mm厚钢筋混凝土板自重 250.1=2.5kN/ m220厚水泥砂浆找平层 200.02=0.4 KN/m2V型轻钢龙骨吊顶 0.25kN/ m2恒载合计 3.8kN/ m2(仓库)活载: 5.0 KN/m2恒载:水磨石地面(10mm面层,20mm水泥砂浆打底) 0.65 KN/m2100mm厚钢筋混凝土板 250.1=2.5 KN/m220mm厚水泥砂浆粉刷层 0.0220=0.4 KN/m2 恒载合计: 3.55 KN/m2(楼梯)活载: 3.5kN/m2恒载:花岗岩地面 280.015=0.42 KN/m220mm厚水泥砂浆找平层 200.02=0.4 KN/m2100mm厚钢筋混凝土楼板 250.1=2.5 KN/m220mm厚水泥砂浆粉刷层 200.02=0.4 KN/m2 恒载合计: 3.72 KN/m2 (电梯机房地面)活载: 7.0 KN/m2恒载: 120mm厚混凝土板 0.1225=3.0 KN/m2 恒载合计: 3.0 KN/m2 (卫生间)活载: 2.5 KN/m2恒载:花岗岩地面 280.015=0.42 KN/m220厚水泥砂浆找平层 200.02=0.4 KN/m2100mm厚钢筋混凝土板 250.1=2.5 KN/m2V型轻钢龙骨吊顶 0.25 KN/m2 恒载合计: 3.57KN/m2 梁柱剪力墙自重梁柱自重由构件的几何尺寸和材料单位体积的自重计算.各层梁的自重见下表统计:110层梁的自重类别净跨(mm)截面(mm)体积(m3)密度(KN/m3)数量(根)单根重(KN)总重(KN)横梁5925.00 2507001.04 25.00 10.00 26.00 260.00 8550.00 2507001.50 25.00 10.00 37.50 375.00 2325.00 2505000.29 25.00 4.00 7.25 29.00 纵梁5925.00 2505000.74 25.00 18.00 18.50 333.00 5325.00 2505000.67 25.00 12.00 16.75 201.00 各层柱的自重见下表统计:柱的自重类别计算高度截面(mm)体积(m3)密度(KN/m3)数量(根)单根重(KN)总重(KN)一层边柱47006006001.692252242.3930.6中柱47007507502.64251266792二-九层边柱38006006001.368252234.2752.4中柱38007507502.1375251253.4375641.25剪力墙自重 每层每片剪力墙的自重为剪力墙体积与材料单位体积自重的乘积(有洞口时减去洞口部分的自重) 1.横向剪力墙自重计算:DE跨: (无洞口) 墙厚250mm C40钢筋混凝土剪力墙 容重25KN/m3计算长度5925mm 计算高度4300mm单跨体积:单跨重量:数量:4总重:(有洞口)总重:272.344KNBD跨: (有洞口) 墙厚250mm C40钢筋混凝土剪力墙 容重25KN/m3计算长度5850mm 计算高度4300mm单跨体积:单跨重量:数量:2总重:内外围护墙自重外围护墙L(每单位面积自重)瓷砖墙面: 250厚蒸压粉煤灰加气混凝土砌块: 石灰粗砂粉刷层 合计: 内隔墙:石灰粗砂粉刷层 200厚蒸压粉煤灰加气混凝土砌块: 合计: 横墙:DE跨 外墙厚250mm 计算长度5925mm 计算高度4300mm单跨体积:单跨重量:数量:2 总重:70.07KN 内墙厚200mm 计算长度5925mm 计算高度4300mm单跨体积:单跨重量:数量:5总重:140.126KNBD跨 外墙厚250mm 计算长度8550mm 计算高度4300mm单跨体积:单跨重量:数量:2 总重:101.10KN 内墙厚200mm 计算长度5925mm 计算高度4300mm单跨体积:单跨重量:数量:2总重:55.341KN总上:横墙总重:1534.02KN同理:纵墙总重:829.654 KN门窗自重门窗铝合金玻璃门窗 木门 合计 重力荷载代表值:G1:第一层荷载G1=楼面恒载+50%楼面活载+纵横梁自重+第二层下半层柱及纵横墙、门、窗自重的一半+第一层上半层柱及纵横墙、门、窗自重的一半G2:第二层荷载G2=楼面恒载+50%楼面活载+纵横梁自重+第三层下半层柱及纵横墙、门、窗自重的一半+第二层上半层柱及纵横墙、门、窗自重的一半二层上半部分以上层同上集中于各层标高处的重力荷载代表值Gi见下图:。横向水平地震作用1.结构总水平地震作用底部剪力标准值(1)结构等效总重力荷载:(2)结构基本自振周期T1假想把集中在各层楼面处的重力荷载代表值Gi作为水平荷载而得到的结构顶点位移,然后计算基本自振周期.为方便计算,把重力荷载简化为水平均布荷载以及顶点集中力F,见上图.均布荷载: 集中荷载:在均布荷载作用下,由总剪力墙单独承受荷载时的顶点位移为:集中荷载F作用下,顶点位移为:用=Z/H=1,=2.24(不考虑连梁的刚度折减),查资料得,框架剪力墙结构在均布荷载作用和顶点集中力作用下的顶点位移系数分别为: 框架剪力墙结构的假想顶点位移 框架剪力墙结构的基本自振周期为: (3)相应与T1的水平地震影响系数本工程属于二类场地,设计地震分组为第一组,由高规表查的特征周期为。按照烈度七度查的水平地震影响系数最大值为:5Tg=1.75T1=0.429所以:1=max=(4)主体结构底部剪力标准值二.各层水平地震作用:因1.4Tg=1.40.35=0.49T1,所以需要考虑顶部附加水平地震作用。各质点的水平地震作用按下式计算,具体计算过程见下表,各楼层地震剪力按下式计算,结果列如表. (5.7) 计算结果详见下表:横向各层水平地震作用Fi计算表层数Hi(m)Gi(103kN)GiHi(103kNm)GiHi/GjHjFi(103kN)Vi(103kN)FiHi(103kNm)10 39.90 0.820 32.718 0.022 0.110 0.110 4.390 9 36.00 7.810 281.160 0.191 0.953 1.063 34.310 8 32.10 7.810 250.701 0.171 0.853 1.916 27.380 7 28.20 7.810 220.242 0.150 0.749 2.665 21.120 6 24.30 7.810 189.783 0.129 0.644 3.309 15.650 5 20.40 7.810 159.354 0.108 0.539 3.848 10.990 4 16.50 7.810 128.865 0.088 0.439 4.287 7.240 3 12.60 7.810 98.406 0.067 0.334 4.354 4.210 2 8.70 7.810 67.407 0.046 0.230 4.584 2.000 1 4.80 8.270 39.693 0.027 0.135 4.611 0.650 1468.842 4.986 127.940 第五节 水平荷载作用效应分析1、 水平地震作用折算以及水平位移验算(1) 水平地震作用折算为方便计算,可以把各层质点处的水平地震作用Fi和顶点附加水平地震作用折算为倒三角形分布荷载q0和顶点集中荷载F 水平地震作用Fi和Fn产生的基底弯矩和剪力分别为: 可以计算得到:q0= 由倒三角形荷载引起的底部剪力和弯矩为: 由顶点集中荷载产生的底部剪力和弯矩为: 水平地震作用下主体结构框架剪力墙协同工作计算简图如下图所示: (2)水平位移验算: 由于本工程实际算得的风荷载比水平地震作用小的多,所以只需进行水平地震作用的位移验算。将=2.35以及各楼层标高处的值带入计算式,可以求出相应高度处的位移y1 、 y3。各楼层标高处的总水平位移为:各层间相对位移:以上各计算结果见下表。层间最大位移于层高之比应满足要求,即由上表知:(满足要求)水平地震作用下的内力计算 1 总剪力墙、总框架、总连梁的内力(1)总剪力墙的总弯矩将值、各楼层标高处的值、倒三角形荷载和顶点集中荷载带入计算式,可以得到总剪力墙各楼层处的总弯矩。计算结果如下表所示:水平地震作用下总剪力墙弯矩Mw()计算表层号标高=Z/H倒三角形荷载作用下顶点集中力作用下Mw=Mw1+Mw2Mw1()(KNm)Mw2()(KNm)10 39.90 1.00 0.00 0.00 0.00 9 36.00 0.90 -3066.90 122.50 -2944.40 8 32.10 0.80 -4470.20 248.90 -4221.30 7 28.20 0.71 -4414.10 383.50 -4030.60 6 24.30 0.61 -3056.60 530.30 -2526.30 5 20.40 0.51 3143.40 694.30 3837.70 4 16.50 0.41 7868.00 1095.70 8963.70 3 12.60 0.32 13655.70 1345.90 15001.60 2 8.70 0.22 20534.50 1639.70 22174.20 1 4.80 0.12 37855.90 1986.40 39842.30 0 0.00 0.00 49586.70 2934.30 52521.00 总剪力墙底部总弯矩Mw与水平地震作用产生的底部总弯矩M0之比为:(满足要求)(2)Vw()的计算: 按照折算的倒三角形荷载和顶点集中位移,可以计算Vw(),计算结果如下表所示:横向水平地震作用下刚结体系Vw()计算表层号标高=Z/H倒三角形荷载作用下顶点集中力作用下 Vw= V1w+ V2w V1w() V2w()10 39.90 1.00 -1413.15 203.70 -1209.45 9 36.00 0.90 -645.00 210.30 -434.70 8 32.10 0.80 28.80 223.60 252.40 7 28.20 0.71 630.00 244.20 874.20 6 24.30 0.61 1690.80 272.70 1963.50 5 20.40 0.51 2184.75 357.30 2542.05 4 16.50 0.41 2675.55 416.40 3091.95 3 12.60 0.32 3179.40 488.40 3667.80 2 8.70 0.22 3712.50 576.80 4289.30 1 4.80 0.12 4291.95 818.30 5110.25 0 0.00 0.00 5356.50 915.00 6271.50 (3)总框架的总剪力、总连梁的分布约束弯矩、总剪力墙的总剪力的计算,结果如下表所示:水平地震作用下m()、Vf()和Vw()计算表层号 标高=z/H Vp() Vw() - Vf()m() Vf() Vw()10 39.900 1.000 915.0 -1209.5 2124.5 441.9 1682.6 -767.6 9 36.000 0.902 1886.9 -434.7 2321.6 482.9 1838.7 48.2 8 32.100 0.805 2758.8 252.4 2506.4 521.3 1985.1 773.7 7 28.200 0.707 3531.0 874.2 2656.8 552.6 2104.2 1426.8 6 24.300 0.609 4203.2 1963.5 2239.7 465.9 1773.8 2429.4 5 20.400 0.511 4775.6 2542.1 2233.5 464.6 1768.9 3006.7 4 16.500 0.414 5248.0 3091.7 2156.3 448.5 1707.8 3540.2 3 12.600 0.316 5620.7 3667.8 1952.9 406.2 1546.7 4074.0 2 8.700 0.218 5893.4 4289.3 1604.1 333.7 1270.4 4623.0 1 4.800 0.120 6066.3 5110.3 956.0 198.8 757.2 5309.1 0 0.000 0.000 6141.9 6141.9 0.0 0.0 0.0 6141.9 (4)总框架剪力V的调整对于总框架剪力V0.2V的楼层,V取0.2V和1.5V中的较小值,见上表中有下划线的数值。各曾框架总剪力调整后,按照调整前后的比例放大各柱和梁的剪力和端部弯矩,柱的轴力不放大。2各根柱、(各根连梁、各片剪力墙)的内力(1)各框架柱的剪力 总框架剪力应按照各框架柱的D值分配到各柱。第j层第i根框架柱的剪力V为: V=本工程只计算轴框架柱的剪力:水平地震作用下轴各柱剪力Vci计算表层号DiDi(103 kN)Vf(kN)Vci(kN)轴轴B轴D轴E轴B轴D轴E轴10 822.522 17.041 41.085 19.614 1682.600 36.477 87.945 41.985 9 822.522 17.041 41.085 19.614 1838.700 39.611 95.499 45.591 8 822.522 17.041 41.085 19.614 1985.100 42.361 102.130 48.757 7 822.522 17.041 41.085 19.614 2104.200 40.172 96.853 46.238 6 822.522 17.041 41.085 19.614 1773.800 36.699 88.479 42.240 5 822.522 17.041 41.085 19.614 1768.900 36.015 86.831 41.453 4 822.522 17.041 41.085 19.614 1707.800 33.713 81.281 38.804 3 822.522 17.041 41.085 19.614 1546.700 29.182 70.357 33.589 2 822.522 17.041 41.085 19.614 1270.400 21.004 50.639 24.175 1 948.517 17.520 42.493 21.800 757.200 6.993 16.961 8.701 (2)各片剪力墙的弯矩和剪力: 各剪力墙各楼层标高处的弯矩和剪力分配给各片剪力墙,计算公式如下:本工程只计算剪力墙W1分配得到的弯矩和剪力,计算表如下所示: 水平地震作用下剪力墙W1弯矩和剪力计算表层号EIw(106kN.m2)Mw(kN.m)Vw(kN)W1(EIeqi)(EIeqi)/EwIwMwiVwi101706.840-767.65510.3220-247.17 91706.84-2944.448.25510.322-948.115.52 81706.84-4221.3773.75510.322-1359.3249.13 71706.84-40311426.85510.322-1298459.43 61706.84-2526.32429.45510.322-813.47782.27 51706.843837.33006.75510.3221235.61968.16 41706.848963.73540.25510.3222886.311139.94 31706.8415001.640745510.3224830.521311.83 21706.8422174.246235510.3227140.091488.61 11706.8439842.35309.15510.32212829.21709.53 3框架梁、柱的内力计算:本工程只计算轴框架梁柱的内力,计算步骤如下:(1) 柱的反弯点高度比: 反弯点高度比近似取倒三角形荷载的反弯点高度比。根据梁、柱线刚度比、总层数、计算层、柱上下梁端线刚度比、上下层与本层高度比,依次查表格查出y0 y1 y2 y3 利用公式即可求出柱的反弯点高度比:y= y0+ y1+ y2 + y3 计算结果如下所示: 轴-各柱的y值计算表B柱层号k123y0y1y2y3y100.6391 10.30 00.390.6391110.40000.480.6391110.440000.4470.6391110.450000.4560.6391110.450000.4550.6391110.450000.4540.6391110.50000.530.6391110.50000.520.639111.20.550000.5510.7750.830.7 00.7D柱层号k123y0y1y2y3y100.6221 10.30 00.390.6221110.40000.480.6221110.420000.4270.6221110.450000.4560.6221110.450000.4550.6221110.450000.4540.6221110.50000.530.6221110.50000.520.622111.20.550000.5510.7650.830.7 00.7E柱层号k123y0y1y2y3y100.8881 10.350 00.3590.8881110.40000.480.8881110.450000.4570.8881110.450000.4560.8881110.450000.4550.8881110.50000.540.8881110.50000.530.8881110.50000.520.888111.20.50000.511.0930.830.64 00.64(2) 梁、柱端弯矩求得轴框架的各梁、柱端弯矩如下表:层次-B-D-EMc(负弯矩)右梁Mr左梁MlMc右梁Mr(负弯矩)左梁MrMc(负弯矩)10 上99.58 99.58 23.72 57.16 33.44 114.62 114.62 下39.40 132.09 36.55 30.78 51.53 155.81 49.12 9 上92.69 57.30 106.68 下61.79 154.31 39.16 38.20 55.21 181.41 71.12 8 上92.52 56.17 110.29 下72.69 158.86 41.18 45.96 58.05 179.04 79.86 7 上86.17 53.27 99.18 下70.50 149.22 38.28 43.58 53.96 171.75 81.15 6 上78.72 48.66 90.60 下64.41 141.66 34.54 39.82 48.69 163.05 74.13 5 上77.25 43.42 88.92 下63.21 128.95 34.88 43.42 49.17 148.42 72.75 4 上65.74 40.64 75.67 下65.74 122.65 31.46 40.64 44.35 141.16 75.67 3 上56.91 35.18 65.50 下56.91 93.77 25.11 35.18 35.39 107.93 65.50 2 上36.86 25.32 42.43 下45.05 55.12 13.04 25.32 18.38 64.38 51.86 1 上10.07 6.11 12.53 下23.50 23.50 4.50 10.86 5.59 29.24 29.24 (3)梁的剪力以及柱子的轴力: 各梁的剪力由梁端弯矩根据平衡条件求出,柱子的轴力该层以上各层与柱相连的梁端剪力的和求出,计算结果见下表:KL2-1KL2-2KL2-1KL2-2-B轴-D轴-E轴层数M12M21LM12M21LVBD(KN)VDE(KN)柱轴力N(KN)KNmmKNmmNBNDNE1099.5823.728.82533.44114.626.2-61.65-74.039132.136.558.82551.53155.816.2-84.32-103.7-61.7-12.474.038154.339.168.82555.21181.416.2-96.74-118.3-146-31.7177.77158.941.188.82558.05179.046.2-100-118.5-243-53.32966149.238.288.82553.96171.756.2-93.75-112.9-343-71.8414.65141.734.548.82548.69163.056.2-88.1-105.9-436-90.9527.4412934.888.82549.17148.426.2-81.92-98.8-525-109633.33122.731.468.82544.35141.166.2-77.06-92.76-606-126732.1293.7725.118.82535.39107.936.2-59.44-71.66-684-141824.8155.1213.048.82518.3864.386.2-34.08-41.38-743-154896.5横向风荷载的计算一、 横向风荷载的计算:1、 垂直作用在建筑物表面单位面积上的风荷载标准值按照下式计算:本建筑物高宽比,矩形平面建筑,风载体型系数,风振系数,其中,为脉动增大系数,按照高规查表,取结构基本自振周期,则,查表得;为脉动影响系数,由高规查表,根据及查得所以,横向风压为:2、 总风荷载计算:作用于建筑物表面高度z处总风荷载是沿高度变化的分布荷载,在本工程中,前式可以简化为,式子中B为高度z处的建筑物长度,对主体结构B=57.6m,对于小塔楼B= m简化计算,将折算为作用于各楼层标高处的集中荷载,即式中,、第i层楼面上、下层层高 计算顶层时,取女儿墙高度 以上计算结果见下表:横向风荷载计算表层号ZizkBHFi(kN)V(kN)FiHi(KNm)11 39.90 1.56 1.60 7.12 3.90 44.53 1776.57 10 36.00 1.51 1.51 57.60 3.90 334.54 44.53 12043.33 9 32.10 1.45 1.42 57.60 3.90 313.95 379.06 10077.93 8 28.20 1.39 1.32 57.60 3.90 292.70 671.76 8254.06 7 24.30 1.33 1.22 57.60 3.90 270.60 942.36 6575.59 6 20.40 1.26 1.12 57.60 3.90 247.42 1189.78 5047.42 5 16.50 1.17 1.01 57.60 3.90 222.79 1412.57 3676.01 4 12.60 1.08 0.89 57.60 3.90 196.06 1608.63 2470.35 3 8.70 1.00 0.78 57.60 3.90 172.25 1780.88 1498.54 2 4.80 1.00 0.72 57.60 4.80 159.46 1940.34 765.43 1 52185.23 三、横向风荷载作用下的内力计算1、荷载折算:作用于各楼层标高处的风荷载集中力(包括小塔楼部分)应折算为三种典型荷载,即作用于屋面小塔楼的风荷载传至主体结构顶端,为顶点集中荷载F=44.53kN;去一层楼面的风荷载密度为均布荷载q,由上表知,倒三角形荷载最大荷载极度第六节 竖向荷载作用下框剪结构内力计算一 框架内力计算 本工程只计算轴框架的内力。框架在竖向荷载作用下的内力计算用分层法,取各层梁及其上下柱为独立的计算单元(柱的远端作为固定端)。除了底层外,各柱线刚度乘以0.9,传递系数取1/3(底层线刚度不折减,传递系数1/2)。分层计算所得的梁端弯矩即为最终弯矩;而柱端弯矩需要由上下两层所得的同一柱端弯矩叠加而成。1 计算简图:2 分配系数以及固端弯矩:(1) 梁柱线刚度KL21:KL22:柱的线刚度见下表:轴框架柱线刚度计算表柱号层号层高bhEc(107kN/m2)ic(104kNm)0.9ic(104kNm)-B.E3.257.31223.2598.1-D14.80.750.753.2517.8532103.90.750.763.2521.97319.776(2) 分配系数:计算弯矩分配系数时,上层柱的线刚度为0.9ic (底层柱为ic)(3) 梁的固端弯矩:各梁分别受均布荷载和集中荷载作用,其固端弯矩见下表:轴在恒荷载作用下梁的固端弯矩层号梁号BD(KL2-1)DE(KL2-2)固端弯矩MBDMDBMDEMED10均布荷载-109.338109.338-46.85646.856集中荷载-148.013148.013-96.0196.01合计-257.351257.351-142.875142.87519均布荷载-113.77113.77-51.71351.713集中荷载-102.495102.495-67.04767.047合计-216.265216.265-118.76117.763 传递与分配:以顶层为例,弯矩分配过程以及结果见下表:顶层在恒荷载作用下的弯矩分配表节点号BDE杆件号下柱BDB下柱DEED下柱荷载类型刚度系数ib ic8.15.675.6719.7767.997.998.1分配系数0.590.430.490.51恒载固端弯矩-257.351257.351-142.88142.88分配和传递-9.73-19.46-68.69-26.33-13.17157.58109.554.75-31.78-63.55-66.15-1.95-3.9-13.78-5.29-2.65157.58159.53288.74-82.74-206.2863.51-66.15恒荷载作用下顶层顶层弯矩图如下所示:利用力矩分配法计算各层的梁端弯矩,各层如下图所示:29层力矩分配图下表为恒荷载作用下轴柱端轴力、弯矩、剪力:一层力矩分配图恒荷载作用下轴梁柱弯矩图(单位:KN.m)由于柱端弯矩取相邻两层单元对应的柱端弯矩之和,原来已经平衡的节点矩可能不再平衡,当此项弯矩较大时应考虑再分配,使节点弯矩取得平衡.横荷载作用下,梁柱最终弯矩图见上图.计算各跨梁端剪力时,可以将梁看作简支梁,求出梁在梁端弯矩和该跨梁上的恒载作用下的支座反力即为梁端剪力;各柱端剪力根据柱端弯矩由平衡条件求出;各柱上端轴力由横向框架梁端剪力、纵向梁端支反力与上层柱传来的轴力相加得到。各柱下端轴力为上端轴力加上本层柱的自重。根据上述做法求得的轴框架梁端弯矩和剪力如下表所示:恒载作用下轴框架梁端弯矩、剪力荷载类型层号kL2-1kL2-2梁端弯矩(kNm)梁端剪力(kN)梁端弯矩(kNm)梁端剪力(kN)MBDMDBVBDVDBMDEMEDVDEVED恒载10 -159.530 288.74 142.15 -149.920 -206.280 63.51 108.41 -108.345 9 -165.065 233.26 123.00 -128.466 -153.191 74.26 92.72 -92.871 8 -165.065 233.26 123.00 -128.466 -153.191 74.26 92.72 -92.871 7 -165.065 233.26 123.00 -128.466 -153.191 74.26 92.72 -92.871 6 -165.065 233.26 123.00 -128.466 -153.191 74.26 92.72 -92.871 5 -165.065 233.26 123.00 -128.466 -153.191 74.26 92.72 -92.871 4 -165.065 233.26 123.00 -128.466 -153.191 74.26 92.72 -92.871 3 -165.065 233.26 123.00 -128.466 -153.191 74.26 92.72 -92.871 2 -165.065 233.26 123.00 -128.466 -153.191 74.26 92.72 -92.871 1 -163.990 234.35 123.00 -128.466 -154.575 72.69 92.72 -92.871 下表为恒荷载作用下轴柱端轴力、弯矩、剪力:恒荷载作用下轴柱端轴力、弯矩、剪力层号柱轴力柱端弯矩(正负要注意!)柱端剪力(正负要注意!)截面轴号轴号轴号BDEBDEBDE10上142.145258.329108.345157.92-82.47-66.1562.294-31.62-27.176下176.345311.766142.54585.026-40.832-39.8369上299.345532.95235.41680.039-39.231-34.42741.685-20.32-18.348下333.545586.387269.61682.532-40.032-37.1328上456.545807.571361.79482.532-40.032-37.13242.324-20.53-19.042下490.745861.008395.99482.532-40.032-37.1327上613.7451082.19488.17282.532-40.032-37.13242.324-20.53-19.042下647.9451135.63522.37282.532-40.032-37.1326上770.9451356.81614.5582.532-40.032-37.13242.324-20.53-19.042下805.1451410.25648.7582.532-40.032-37.1325上928.1451631.43740.92882.532-40.032-37.13242.324-20.53-19.042下962.3451684.87775.12882.532-40.032-37.1324上1085.351906.06867.84682.532-40.032-37.13242.324-20.53-19.042下1119.551959.49902.04682.532-40.032-37.1323上1242.552180.68994.76482.532-40.032-37.13242.324-20.53-19.042下1276.752234.111028.96482.532-40.032-37.1322上1399.752455.31121.68282.532-40.032-37.13243.444-20.97-19.322下1433.952508.731155.88286.899-41.77-38.2231上1556.952729.921248.677.091-37.755-34.46724.091-11.8-10.771下1599.252795.921290.938.545-18.878-17.234活荷载作用下的弯矩分配、传递与恒载作用下的计算完全相同,下表为活载作用下轴框架梁端弯矩和剪力:活荷载作用下轴框架梁端弯矩、剪力荷载类型层号kL2-1kL2-2梁端弯矩(kNm)梁端剪力(kN)梁端弯矩(kNm)梁端剪力(kN)MBDMDBVBDVDBMDEMEDVDEVED活载10 -32.170 66.430 29.434 -42.220 -47.970 14.970 32.654 -22.563 9 -51.460 62.060 32.996 -38.659 -35.400 30.000 28.581 -26.637 8 -51.460 62.060 32.996 -38.659 -35.400 30.000 28.581 -26.637 7 -51.460 62.060 32.996 -38.659 -35.400 30.000 28.581 -26.637 6 -51.460 62.060 32.996 -38.659 -35.400 30.000 28.581 -26.637 5 -51.460 62.060 32.996 -38.659 -35.400 30.000 28.581 -26.637 4 -51.460 62.060 32.996 -38.659 -35.400 30.000 28.581 -26.637 3 -51.460 62.060 32.996 -38.659 -35.400 30.000 28.581 -26.637 2 -51.460 62.060 32.996 -38.659 -35.400 30.000 28.581 -26.637 1 -48.580 61.530 32.714 -38.941 -36.460 27.990 29.033 -26.184 第七节 荷载效应组合 根据高规规定,抗震设计要同时计算荷载效应组合。计算时,一种情况为永久荷载效应控制的组合为: 式中, 对由可变荷载效应控制的组合为: 另一种情况,对于本结构,H 60m,7度抗震设计,可以表示为: 对于风荷载和地震作用尚需考虑正反两个方向的荷载效应。本工程以大多数情况下对最不利内力起控制作用的上述1、4两种组合为例,进行计算。一 框架梁柱的内力调整。 为了获得梁、柱杆端截面的弯矩和剪力,需要将节点内力标准值换算为支座边缘的内力标准值。按照下式进行计算:(q为作用在梁上的均布荷载) 柱支座边缘处的弯矩和梁支座边缘弯矩的换算公式相同,由于柱的弯矩图为直线图形,故柱支座边缘的剪力值仍为节点处的剪力值。 在内力组合前,对竖向荷载作用下梁支座边缘处的弯矩需要乘以弯矩调幅系数,本工程取0.8,跨中弯矩取1.1下表为轴梁端换成支座边缘后的弯矩和剪力。其中,竖向荷载下的梁端弯矩已经做了塑性调幅,跨中弯矩根据调幅前的梁端弯矩、剪力和梁上实际荷载由平衡条件求得,再乘以1.1的增大系数。二框架梁、柱的内力组合:在有地震作用组合时,承载力抗震调整系数应根据梁、柱、剪力墙各个构件的不同受力状态取值。下表为连梁的内力组合表。轴框架梁控制截面内力标准值及KL2-1、KL2-2的内力组合表层号跨次截面恒载活荷载地震作用1.35SGK+SQK1.2MGK+1.3MEHKRE(1.2MGE+1.3MEHK)1.2VGK+1.3VEHKMGKVGKMQKVQKMEHK()VEHKMVM(从左向右)M(从右向左)M(从左向右)M(从右向左)M(从左向右)M(从右向左)10 轴BD跨B-84.98 137.59 -11.57 46.06 60.58 12.79 -126.29 231.81 -23.23 -180.73 -17.42 -135.55 181.74 181.74 DL-174.77 144.23 -38.38 58.63 58.38 -274.32 253.34 -133.83 -285.62 -100.37 -214.22 173.08 156.45 跨中231.75 127.42 440.28 278.10 278.10 208.57 208.57 轴DE跨DR-124.37 103.57 -27.14 46.10 73.47 21.79 -195.04 185.92 -53.73 -244.76 -40.30 -183.57 152.61 95.95 E-18.30 104.47 -4.63 36.13 70.36 -29.34 177.17 69.50 -113.43 52.13 -85.07 125.37 97.04 跨中106.27 57.96 201.42 127.52 127.52 95.64 95.64 9 轴BD跨B-95.15 118.45 -20.89 73.74 99.44 21.17 -149.35 233.65 15.09 -243.45 11.32 -182.59 169.66 114.62 DL-138.43 122.78 -32.17 81.50 97.47 -219.05 247.25 -39.41 -292.82 -29.56 -219.62 147.33 119.81 跨中163.12 241.35 461.56 195.74 195.74 146.80 146.80 轴DE跨DR-87.78 87.98 -16.58 64.25 113.92 33.33 -135.09 183.03 42.75 -253.43 32.07 -190.07 148.91 62.25 E-31.55 88.60 -6.90 59.10 106.06 -49.49 178.71 100.02 -175.74 75.02 -131.81 106.32 62.99 跨中130.35 140.43 316.41 156.42 156.42 117.32 117.32 8 轴BD跨B-95.15 118.45 -20.89 73.74 99.45 21.17 -149.35 233.65 15.10 -243.47 11.33 -182.60 169.67 114.61 DL-138.43 122.78 -32.17 81.50 97.47 -219.05 247.25 -39.41 -292.82 -29.56 -219.62 147.33 119.81 跨中163.12 241.35 461.56 195.74 195.74 146.80 146.80 轴DE跨DR-87.78 87.98 -16.58 64.25 113.92 33.41 -135.09 183.03 42.76 -253.43 32.07 -190.08 149.02 62.14 E-31.55 88.60 -6.90 59.10 106.07 -49.49 178.71 100.03 -175.74 75.02 -131.81 106.32 62.88 跨中130.35 140.43 316.41 156.42 156.42 117.32 117.32 7 轴BD跨B-95.15 118.45 -20.89 73.74 99.46 21.15 -149.35 233.65 15.12 -243.48 11.34 -182.61 169.63 114.65 DL-138.43 122.78 -32.17 81.50 97.47 -219.05 247.25 -39.41 -292.82 -29.56 -219.62 147.33 119.84 跨中163.12 241.35 461.56 195.74 195.74 146.80 146.80 轴DE跨DR-87.78 87.98 -16.58 64.25 113.92 33.41 -135.09 183.03 42.76 -253.44 32.07 -190.08 149.02 62.14 E-31.55 88.60 -6.90 59.10 106.07 -49.49 178.71 100.03 -175.74 75.02 -131.81 106.32 62.88 跨中130.35 140.43 316.41 156.42 156.42 117.32 117.32 6 轴BD跨B-95.15 118.45 -20.89 73.74 99.47 21.15 -149.35 233.65 15.13 -243.49 11.35 -182.62 169.63 114.65 DL-138.43 122.78 -32.17 81.50 97.47 -219.05 247.25 -39.41 -292.82 -29.56 -219.62 147.33 119.84 跨中163.12 241.35 461.56 195.74 195.74 146.80 146.80 轴DE跨DR-87.78 87.98 -16.58 64.25 113.92 33.41 -135.09 183.03 42.76 -253.44 32.07 -190.08 149.02 62.14 E-31.55 88.60 -6.90 59.10 106.07 -49.49 178.71 100.03 -175.75 75.02 -131.81 106.32 62.88 跨中130.35 140.43 316.41 156.42 156.42 117.32 117.32 5 轴BD跨B-95.15 118.45 -20.89 73.74 99.48 21.15 -149.35 233.65 15.14 -243.51 11.36 -182.63 169.63 114.65 DL-138.43 122.78 -32.17 81.50 97.47 -219.05 247.25 -39.41 -292.83 -29.55 -219.62 147.33 119.84 跨中163.12 241.35 461.56 195.74 195.74 146.80 146.80 轴DE跨DR-87.78 87.98 -16.58 64.25 113.92 33.41 -135.09 183.03 42.76 -253.44 32.07 -190.08 149.02 62.14 E-31.55 88.60 -6.90 59.10 106.07 -49.49 178.71 100.03 -175.75 75.02 -131.81 106.32 62.88 跨中130.35 140.43 316.41 156.42 156.42 117.32 117.32 4 轴BD跨B-95.15 118.45 -20.89 73.74 99.49 21.15 -149.35 233.65 15.15 -243.52 11.37 -182.64 169.63 114.65 DL-138.43 122.78 -32.17 81.50 97.47 -219.05 247.25 -39.41 -292.83 -29.55 -219.62 147.33 119.84 跨中163.12 241.35 461.56 195.74 195.74 146.80 146.80 轴DE跨DR-87.78 87.98 -16.58 64.25 113.92 33.41 -135.09 183.03 42.76 -253.44 32.07 -190.08 149.02 62.14 E-31.55 88.60 -6.90 59.10 106.07 -49.49 178.71 100.03 -175.75 75.02 -131.81 106.32 62.88 跨中130.35 140.43 316.41 156.42 156.42 117.32 117.32 3 轴BD跨B-95.15 118.45 -20.89 73.74 99.50 21.15 -149.35 233.65 15.17 -243.53 11.38 -182.65 169.63 114.65 DL-138.43 122.78 -32.17 81.50 97.47 -219.05 247.25 -39.40 -292.83 -29.55 -219.62 147.33 119.84 跨中163.12 241.35 461.56 195.74 195.74 146.80 146.80 轴DE跨DR-87.78 87.98 -16.58 64.25 113.92 33.41 -135.09 183.03 42.76 -253.44 32.07 -190.08 149.02 62.14 E-31.55 88.60 -6.90 59.10 106.07 -49.49 178.71 100.03 -175.75 75.02 -131.81 106.32 62.88 跨中130.35 140.43 316.41 156.42 156.42 117.32 117.32 2 轴BD跨B-95.15 118.45 -20.89 73.74 99.51 21.15 -149.35 233.65 15.18 -243.55 11.39 -182.66 169.63 114.65 DL-138.43 122.78 -32.17 81.50 97.47 -219.05 247.25 -39.40 -292.83 -29.55 -219.62 147.33 119.84 跨中163.12 241.35 461.56 195.74 195.74 146.80 146.80 轴DE跨DR-87.78 87.98 -16.58 64.25 113.93 33.41 -135.09 183.03 42.76 -253.44 32.07 -190.08 149.02 62.14 E-31.55 88.60 -6.90 59.10 106.07 -49.49 178.71 100.03 -175.75 75.03 -131.81 106.32 62.88 跨中130.35 140.43 316.41 156.42 156.42 117.32 117.32 1 轴BD跨B-94.29 117.44 -20.77 74.45 57.72 6.53 -148.06 232.99 -38.12 -188.18 -28.59 -141.13 149.41 132.44 DL-135.51 122.88 -26.37 80.46 55.04 -209.31 246.34 -91.06 -234.17 -68.29 -175.62 147.45 138.96 跨中161.01 244.76 462.12 193.21 193.21 144.91 144.91 轴DE跨DR-86.48 86.36 -11.31 62.92 65.40 15.72 -128.06 179.50 -18.77 -188.79 -14.08 -141.60 124.07 83.19 E-31.36 87.47 -7.77 60.19 38.39 -50.10 178.27 12.27 -87.53 9.21 -65.65 104.96 84.52 跨中129.06 143.29 317.52 154.87 154.84 116.15 116.15 第八节 框剪结构截面设计及配筋计算一、框架梁:以2层轴DE跨框架梁(KL2-2)的计算为例:混凝土等级C30 纵筋为HRB335 箍筋为HPB235 1、梁的最不利内力: 经以上计算可知,梁的最不利内力如下: 跨间: Mmax=316.41KNm 支座D:Mmax=190.08 KNm 支座E:Mmax=131.81 KNm 调整后剪力:V=182.70 KN2、梁正截面受弯承载力计算: 抗震设计中,对于楼面现浇的框架结构,梁支座负弯矩按矩形截面计算纵筋数量。跨中正弯矩按T形截面计算纵筋数量,跨中截面的计算弯矩,应取该跨的跨间最大正弯矩或支座弯矩与1/2简支梁弯矩之中的较大者,依据上述理论,得:(1)、考虑跨间最大弯矩处: 按T形截面设计,翼缘计算宽度,按跨度考虑,取按照单排布置钢筋:则因为属第一类T形截面下部跨间截面按单筋T形截面计算:sb=0.3988故不属于超筋梁实配钢筋、,放一排,As=1742 mm2。满足最小配筋率的要求。配筋图如下所示:(2)、考虑两支座处截面: 按照矩形截面设计,将下部跨间截面的225钢筋伸入支座,作为支座负弯矩作用下的受压钢筋,受压钢筋的面积为982mm2,再计算相应的受拉钢筋As,即支座DR (满足要求) (满足最小配筋率的要求)实配钢筋(跨中弯起的) 满足梁的抗震构造要求。3、斜截面受剪承载力的计算:查前面的内力组合表,支座截面最不利剪力组合值,由强减弱弯的要求,梁端截面剪力设计值应该适当调整,即:剪压比,满足最小截面尺寸要求。箍筋选用HPB235级钢筋,则有:梁端箍筋加密区的箍筋最大间距和最小直径尚应该满足要求,现选双肢箍,其中,满足要求。配箍率为:,所以按照构造配箍即可。配筋图如下图所示:二.框架柱现进行5层B柱的截面配筋。柱截面尺寸为:600X600,混凝土强度等级为C40, 1 剪跨比和轴压比根据高规规定,柱子的剪跨比可以取柱子净高与计算方向2倍柱截面有效高度之比,即,为长柱。计算柱子的轴力为,则,满足柱子轴压比限值的要求。2 正截面抗弯承载力计算:5层B柱上、下端截面共有6组内力,为达到强柱弱梁的要求,其中,上、下端及N、及M的4组柱端弯矩设计值应按照进行调整。 柱子的抗震等级为三级,系数,计算得(边柱节点只有右梁),则5层柱上端弯矩为,六层柱下端为,同一节点上、下柱端弯矩,各柱端弯矩应增加,即5层柱子上端的一组考虑抗震调整系数后应该为,其余三组的调整为95.54 33.83 18.57 柱子计算长度为: 采用对称配筋,选用HRB335级钢筋()(1)的一组: 取 取 为小偏心受压。对称配筋时先按照下式求出值,再带入求出计算配筋面积。仅需要构造配筋。(2)的一组: 为小偏心受压,按照构造配筋,全部纵向配筋率不应大于5%,且不小于0.7%,每一侧不应小于0.2%实际配筋每侧,共配筋3 斜截面抗剪承载力计算:为了保证强剪弱弯,柱子剪力设计值应该做调整,(截面尺寸满足要求)由内力组合选取与相应的轴向压力设计值 仅需要按照构造配置箍筋。根据规定,柱端加密区箍筋选用,采用复合箍筋,其体积配箍率为:满足要求柱子非加密区采用4肢,间距为15015d=270mm满足要求。 本工程框架抗震等级为三级,只需要按照要求在节点核心区设置水平箍筋,箍筋特征值不宜小于0.08,体积配箍率不宜小于0.4%,不需要进行抗剪承载力的验算。 柱子截面配筋见下图: 柱截面配筋图第九节 现浇楼梯设计以及楼梯配筋设计一、说明:本工程采用现浇板式楼梯,砼强度等级为C20,钢筋直径d14mm时采用II级钢,d12mm时采用I级钢。查荷载规范得,楼梯活荷载为2.5KN/m2。斜板两端与平台梁和楼梯梁整结,平台板一端与平台梁整结,另外三端与框架梁整结,平台梁两端与框架梁整结。二、梯段板的计算:1、确定板厚梯段板的斜向净长为:1n= 11n/cos=3080/0.876 =3516mm,梯段板的厚度:t1=(1/251/30)l1n=(1/251/30)3516=117140mm,取t1=120mm。2、荷载统计:取1米板宽带计算,楼梯斜板的倾斜角为cos=0.874荷载统计如下所示:踏步重: kN/m 斜板重: kN/m20mm厚找平层: 恒荷载标准值: gk=恒荷载设计值: gkN/m活荷载标准值: qk=kN/m活荷载设计值: qkN/m3.内力计算:计算跨度:l0=3080跨中弯矩:M=1/10(7.164+3.5)3.082=10.12kNm4.配筋计算:受力筋选用 , 分布筋选用三、平台板的计算:1.荷载统计:(取1米板宽带计算) 平台板自重(假定板厚70mm)1.75kN/m 20mm厚找平层:0.40kN/m恒荷载标准值:2.15kN/m恒荷载设计值:2.58kN/m活荷载设计值:3.5kN/m2.内力计算:计算跨度:跨中弯矩:1. 配筋计算:取mm2 受力筋选用 , 分布筋选用梯段板和平台板的配筋图如下图所示:四、平台梁的计算:1.荷载统计: 梯段板传来的荷载: 平台板传来的荷载: /m 梁的自重(假定) 总荷载设计值: 23.5kN/m2.内力计算: 计算跨度 取两者中较小值3.20m3.配筋计算:(1)正截面计算(按照第一类倒L形截面设计)翼缘宽度:取两者中的较小值:533mm 受力筋选用3(2)斜截面箍筋计算 所以箍筋可以按照构造配筋,采用 钢筋布置如下图所示平台梁配筋图平台板配筋图见下表:第十节 基础设计一基础形式的选择:1选型:本工程由于是具有地下室的十一层的高层框架-剪力墙结构,上部结构的荷载较大再加上地基土软弱、不均匀,如果采用单独的独立基础或者条形基础均不能满足地基承载力的要求,因此可以选用扩大基底面积的片筏基础,以次来减少基底压力,提高地基承载力和调整地基不均匀沉降,避免了结构物局部发生明显的不均匀沉降,另外本工程中地下一层为地下室,采用片筏基础能提供宽敞的地下使用空间。综合考虑,本工程基础宜采用梁板式的片筏基础,梁板式片筏基础所耗费的混凝土和钢筋比平板式的要少,因此具有材料消耗低、刚度大的特点。2基底面积:二片筏基础的设计:按照构造要求设计以及进行配筋1筏板厚度:筏板厚度根据抗冲切、抗剪切要求确定。本工程的筏板厚度取400mm2筏板平面尺寸:对于基础梁外伸的梁板式筏基,筏基底板挑处的长度横向为1300mm,纵向为1300mm3筏板混凝土:因为有地下室,采用防水混凝土,等级为C404筏板配筋:筏板采用双层配筋,受力钢筋采用直径为10 ,间距为150mm ,分布钢筋直径为10,间距为200mm.5筏基地下室:地下室的外墙厚度为250mm,内墙为200mm,墙体内设置双面钢筋,竖向和水平钢筋的直径为12,间距为150mm.基础设计(筏板基础)1地质资料0002.40m 填土fk=130kPa2.404.90m 粘质粘土fk=154kPa4.9010.50m 粘土fk=202kPa10.5m以下 粉土fk=158kPa取筏板后1.2m,悬挑700mm,混凝土强度C30, , 高层建筑筏型基础埋深应满足地基承载力变形和稳定性要求在抗震设防区,不宜小于建筑高度的 ,所以基础埋深取2.7m2基础受力计算2.1基础设计需要的各种荷载效应的组合表43 荷载效应标准组合与准永久组合标准组合准永久组合恒载满布活载左风右风恒+活+0.6左风恒+活+0.6右风恒+左风+0.7活恒+右风+0.7活恒+0.5(活+左风)恒+0.5(活+右风)底层A柱ML9.923.04-2.892.8911.2314.699.15814.9389.99512.885V-9.59-2.911.27-1.27-11.7-13.3-10.4-12.9-10.41-11.68N-1251.5-2460.71-0.71-1497-1498-1423-1424-1374.1-1374.8底层B柱ML-0.8390.91-3.013.012-1.741.878-3.212.81-1.891.122V1.174-0.781.54-1.541.318-0.532.168-0.9121.5540.014N-1596-482-1.151.15-2079-2077-1935-1932-1837.6-1836.4底层C柱ML1.613-0.58-3.013.012-0.772.84-1.814.219-0.1832.829V-1.2780.711.54-1.540.356-1.490.759-2.321-0.153-1.693N-1566.7-472.21.15-1.15-2038-2040-1896-1898-1802.3-1803.4底层D柱ML-9.36-2.85-2.892.89-13.9-10.5-14.2-8.465-12.23-9.34V9.692.981.27-1.2713.4311.9113.0510.50611.81510.545N-1251.6-244.8-0.710.71-1497-1496-1424-1422-1374.3-1373.6表44 底层柱传给基础的力组合后结果见柱子内力标准组合准永久组合基本组合底层A柱ML14.6912.88566.86 V-13.3-11.68-36.56 N-1498-1374.8-1907.13 底层B柱ML-1.74-1.89-55.89 V1.3181.55429.37 N-2079-1837.6-2279.73 底层C柱ML2.842.82957.02 V-1.49-1.693-29.54 N-2040-1803.4-2238.71 底层D柱ML-10.5-12.23-66.07 V11.9111.81536.73 N-1496-1374.3-1906.51 2.3验算持力层强度传至基础的荷载效应按正常使用状态下荷载效应的标准组合修正后的承载力为 Fk=1498+2079+2040+1498=7115kN基础底面平均反力标准值 基础边缘所受的基底反力故持力层的强度能满足要求。2.4基底净反力和刚性板条的内力计算2.4.1基底净反力基底的反力设计值按承载能力极限状态下荷载效应的基本组合.= 最大值与最小值相差不大,可用基底平均反力进行计算,基底平均净反力2.5冲切验算2.5.1冲切要求以中柱B为例进行冲切验算。筏板的有效高度 与弯矩作用方向一致的冲切临界截面的边长为 处的 不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配弯矩系数为冲切临界截面对其重心的极惯性矩为由于柱截面两边长相等,两边之比 ,取 则冲切截面上的剪应力为故内柱抗冲切力能够满足要求。2.5.2内筒板厚要求满足。2.5.3受剪承载力要求除满足上述冲切要求外平板式发板尚应验算柱边缘, 还要满足处筏板的受剪承载力的要求。 5 筏板基础与上部结构的连接:筏板基础梁与上部结构柱的连接构造见下图所示:6筏板基础梁与上部剪力墙的连接构造见下图所示:第四章 谢辞经过四年基础与专业知识的学习,培养了我独立做建筑结构设计的基本能力。在老师的指导和同学的帮助下,我基本完成了这次的设计课题某办公楼的框架-剪力墙结构设计。此课题设计历时约三个月,在这三个月中,我能根据设计进度的安排,紧密地和本组同学合作,按时按量的完成自己的设计任务。在毕设中期,我们通过所学的基本理论、专业知识和基本技能进行建筑、结构设计。 毕业设计是对四年专业知识的一次综合应用、扩充和深化,也是对我们理论运用于实际设计的一次锻炼。通过毕业设计,我不仅温习了以前在课堂上学习的专业知识,同时我也得到了老师和同学的帮助,学习和体会到了建筑结构设计的基本技能和思想。 特别值得一提的是,最近发生的汶川大地震,损失严重,让我深深的认识到作为一个结构工程师,应该将设计做的更好,结构的稳定性、安全性比以前要有一定的提高。并且,一个结构工程师,应该具备一种严谨的设计态度,本着建筑以人为本的思想,力求做到实用、经济、美观;在设计一幢建筑物的过程中,应该严格按照建筑规范的要求,同时也要考虑各个工种的协调和合作,特别是结构和建筑的交流,结构设计和施工的协调。这就要求一个结构工程师应该具备灵活的一面,不仅要抓住建筑结构设计的主要矛盾,同时也要全面地考虑一些细节和局部的设计。在毕业设计的过程中,我深深地认识到各种建筑规范和规定是建筑设计的灵魂,一定要好好把握。在以后的学习和工作中,要不断加强对建筑规范的学习和体会,有了这个根本,我们就不会犯工程上的低级错误,同时我们在处理工程问题时就有了更大的灵活性。 在本次毕业设计中,我为能用上四年的学习成果而欣喜万分,同时我深深的感觉到了基础知识的重要性。在以前学习结构力学、钢筋混凝土结构、建筑结构抗震等专业课时,老是觉得所学的东西跟实践相差的太远,甚至觉得没什么用,这可能跟当时特别想学什么就马上能用有关。这种急功近利的思想使自己对一些专业课的学习有所放松,在毕业设计的过程中,我感觉到那些基础知识是相当重要的。在以后的学习生活中切不可急于求成而忽略了基础的夯实,对一门系统的科学,应该扎实的学习它的每一部分知识,充分利用各种实践环节,切实做到理论联系实践,学以致用。 同样,通过这次毕业设计,我也感觉到我们的课程设置方面的优势和不足。在土建学院土木工程学科,我们拥有相当一批非常优秀的结构和施工方面的老师,拥有一批相当勤奋的同学,在教和学的环节处理上,可以说是相当不错的。但话有说回来,我们在一些课程的设置上是不甚合理的。大学期间有些课程的安排不是很合理,想CAD应该提早学习,这样才有机会更好的熟练应用,希望以后的课程能够设置得更加合理,这样我们运用起来可能会更加自如。 但毕业设计这段时间是我四年的大学生活最充实得一段时间,我也初步掌握了建筑结构设计的基础知识。在研究生阶段,我将更加对基础知识的学习,继续扎实的学习土木工程的专业知识,争取早日成为一名优秀的结构工程师。大学毕业后,很多同学都将开始他们人生中的第一份正式工作,这充满了激情与挑战,自己挺向往他们的,毕业了有一个新的环境,新的开始,新的里程。而我还要在自己的母校继续研究生的学习和生活,虽然周边的环境没有变化,但有的时候,想想也觉得有一点忧伤,因为少了一点点新奇,多了一点点乏味,但是不管怎样,还是很希望自己能够在以后的学习、生活中,每天多一点色彩,规划好未来之路,正确地树立前进的目标,让生活目标而不是在沉重的氛围中度过,要有一个健全平和的心态,因为它是始终贯穿成功之路的筹码。 自信的生活,开心的笑,成功与快乐并驾齐驱;不以物喜,不以己悲。 面朝大海,春暖花开.希望一切美梦成真,最后,感谢大学里身边所有的老师,愿你们永远有一颗年轻的心! 杨霄 2008/6/1第五章 参考文献参考文献1、腾智明,朱金铨编著. 混凝土结构及砌体结构.中国建筑工业出版社,1992、黄棠.王效通主编. 结构设计原理(上册) .中国铁道出版社,19993、邵全,韦敏才.土力学与基础工程.重庆大学出版社出版,19974、王祖华主编. 混凝土及砌体结构.华南理工大学出版社,19935、王萍主编. 混凝土结构及砌体结构.大连理工大学出版社,20006、李国强.建筑结构抗震设计.中国建筑工业出版社,20027、朱彦鹏主编. 混凝土结构设计原理.重庆大学出版社,20028、黄双华主编.房屋结构设计.重庆大学出版社,20019、陈树华主编.建筑地基基础.哈尔滨工程大学出版社,200310、侯治国主编.砼结构.武汉工业大学出版社,199911、胡乃君主编.建筑结构课程设计指导.武汉工业大学出版社,200112、沈满生、苏三庆主编.高等学校建筑工程专业毕业设计指导.中国建筑工业出版社,200013、贾韵绮、王毅红主编.工业与民用建筑专业课程设计指南.中国建筑工业出版社,199414、陈登鳌主编.建筑设计资料集(1、2、3、8、9).中国建筑工业出版社出版,199415、新版建筑工程勘察设计规范汇编.北京:中国建筑工业出版社,200216、同济大学、西安建筑科技大学、东南大学、重庆建筑大学编.房屋建筑学中国建筑工业出版社,1997 17、建筑抗震设计规范 GB50011-2001 18、混凝土结构设计规范 GB 50010200219、建筑地基基础设计规范GB50007200220、建筑抗震设防分类标准GB502239521、建筑结构荷载规范 GB 50009200122。、建筑地基基础设计规范GB 500072002专业英语翻译原文:The future of the tall buildingAnd structure of buildings Zoning effects on the density of tall buildings and solar design may raise ethical challenge. A combined project of old and new buildings may bring back human scale to our cities. Owners and conceptual designers will be challenged in the 1980s to produce economically sound, people-oriented buildings.In 1980 the Level House, designed by Skidmore, Owings and Merril1 (SOM) received the 25-year award from the American Institute of Architects “in recognition of architectural design of enduring significance”. This award is given once a year for a building between 25and 35 years old .Lewis Mumford described the Lever House as “the first office building in which modern materials, modern construction, modern functions have been combined with a modern plan”. At the time, this daring concept could only be achieved by visionary men like Gordon Bunshaft , the designer , and Charles Luckman , the owner and then-president of Lever Brothers . The project also included a few “first” : (1) it was the first sealed glass tower ever built ; (2) it was the first office building designed by SOM ;and (3) it was the first office building on Park Avenue to omit retail space on the first floor. Today, after hundreds of look-alike and variations on the grid design, we have reached what may be the epitome of tall building design: the nondescript building. Except for a few recently completed buildings that seem to be people-oriented in their lower floors, most tall buildings seem to be a repletion of the dull, graph-paper-like monoliths in many of our cities. Can this be the end of the design-line for tall buildings? Probably not. There are definite signs that are most encouraging. Architects and owners have recently begun to discuss the design problem publicly. Perhaps we are at the threshold of a new era. The 1980s may bring forth some new visionaries like Bunshaft and Luckman. If so, what kinds of restrictions or challenges do they face?Zoning Indications are strong that cities may restrict the density of tall buildings , that is , reduce the number of tall buildings per square mile . In 1980 the term grid-lock was used for the first time publicly in New York City. It caused a terror-like sensation in the pit of ones stomach. The term refers to a situation in which traffic comes to a standstill for many city blocks in all directions. The jam-up may even reach to the tunnels and bridges .Strangely enough, such as event happened in New York in a year of fuel shortages and high gasoline prices. If we are to avoid similar occurrences, it is obvious that the density of people, places, and vehicles must be drastically reduced. Zoning may be the only long-term solution.Solar zoning may become more and more popular as city residents are blocked from the sun by tall buildings. Regardless of how effectively a tall building is designed to conserve energy, it may at the same time deprive a resident or neighbor of solar access. In the 1980s the right to see the sun may become a most interesting ethical question that may revolutionize the architectural fabric of the city. Mixed-use zoning became a financially viable alternative during the 1970s, may become commonplace during the 1980s, especially if it is combined with solar zoning to provide access to the sun for all occupants.Renovation Emery Roth and Sons designed the Palace Hotel in New York as an addition to a renovated historic Villard house on Madison Avenue. It is a striking example of what can be done with salvageable and beautifully detailed old buildings. Recycling both large and small buildings may become the way in which humanism and warmth will be returned to buildings during the 80s. If we must continue to design with glass and aluminum in stark grid patterns, for whatever reason, we may find that a combination of new and old will become the great humane design trend of the future.Conceptual design It has been suggested in architectural magazines that the Bank of America office building in San Francisco is too large for the citys scale. It has also been suggested that the John Hancock Center in Boston in not only out of scale but also out of character with the city. Similar statements and opinions have been made about other significant tall buildings in cities throughout the world. These comments raise some basic questions about the design process and who really make the design decisions on important structures-and about who will make these decisions in the 1980s.Will the forthcoming visionaries-architects and owners-return to more humane designs?Will the sociologist or psychologist play a more important role in the years ahead to help convince these visionaries that a new, radically different, human-scaled architecture is long overdue? If these are valid questions, could it be that our “best” architectural designers of the 60s and 70s will become the worst designers of the 80s and 90s? Or will they learn and respond to a valuable lesson they should have learned in their “History of Architecture” course in college that “architecture usually reflects the success or failure or failure of a civilized society”? Only time will tell.A building is closely bound up with people, for it provides people with the necessary space to work and live in. As classified by their use, buildings are mainly of two types: industrial buildings and civil buildings. Industrial buildings are used by various factories or industrial production while civil buildings are those that are used by people for dwelling, emplovment, education and other social activities. The construction of industrial buildings is the same as that of civil buildings. However, industrial and civil buildings differ in the materials used, and in the structural forms or systems they are used. Considering only the engineering essentials, the structure of a building can be defined as the assemblage of those parts which exist for the purpose of maintaining shape and stability. Its primary purpose is to resist any loads applied to the building and to transmit those to the ground. In terms of architecture, the structure of a building is and does much more than that. It is an inseparable part of the building form and to varying degrees is a generator of that form. Used skillfully, the building structure can establish or reinforce orders and rhythms among the architectural volumes and planes. It can be visually dominant or recessive. It can develop harmonies or conflicts. It can be both confining and emancipating. And, unfortunately in some cases, it cannot be ignored. It is physical. The structure must also be engineered to maintain the architectural form. The principles and tools of physics and mathematics provide the basis for differentiating between rational and irrational forms in terms of construction. Artists can sometimes generate shapes that obviate any consideration of science, but architects cannot. There are at least three items that must be present in the structure of a building: stability, strength and stiffness, economy. Taking the first of the three requirements, it is obvious that stability is needed to maintain shape. An unstable building structure implies unbalanced forces or a lack of equilibrium and a consequent acceleration of the structure or its pieces. The requirement of strength means that the materials selected to resist the stresses generated by the loads and shapes of the structure(s) must be adequate. Indeed, a “factor of safety” is usually provided so that under the anticipated loads, a given material is not stressed to a level even close to its rupture point. The material property called stiffness is considered with the requirement of strength. Stiffness is different from strength in that it directly involves how much a structure strain or deflects under load .A material that is very strong but lacking in stiffness will deform too much to be of value in resisting the forces applied. Economy of building structure refers to more than just the cost of the materials used.Construction economy is a complicated subject involving raw materials ,fabrication ,erection ,and maintenance .Design and construction labor costs and the costs of energy consumption must be considered .Speed of construction and the cost of money (interest) are also factors .In most design situations ,more than one structural material requires consideration .Completive alternatives almost always exist ,and the choice is seldom obvious . Apart from these three primary requirements ,several other factors are worthy of emphasis .First ,the structure or structural system must relate to the buildings function .It should not be in conflict in terms of form .For example ,a linear function demands a linear structure ,and therefore it would be improper to roof a bowling alley with a dome .Similarly ,a theater must have large , unobstructed spans but a fine restaurant probably should not .Stated simply , the structure must be appropriate to the function it is to shelter . Second, the structure must be fire-resistant. It is obvious that the structural system must be able to maintain its integrity at least until the occupants are safely out. Building codes specify the number of hours for which certain parts of a building must resist the heat without collapse. The structural materials used for those elements must be inherently fire-resistant or be adequately protected by fireproofing materials. The degree of fire resistance to be provided will depend upon a number of items, including the use and occupancy load of the space, its dimensions, and the location of the building. Third, the structure should integrate well with the buildings circulation systems. It should not be in conflict with the piping systems for water and waste, the ducting systems for air, or (most important) the movement of people. It is obvious building systems must be coordinated as the design progresses. One can design in a sequential step-by-step manner within any one system, but the design of all of them should move in a parallel manner toward completion. Spatially, all the various parts of a building are interdependent. Fourth, the structure must be psychologically safe as well as physically safe. A high-rise frame that sways considerably in the wind might not actually be dangerous but may make the building uninhabitable just the same. Lightweight floor systems that are too: ”bouncy” can make the users very uncomfortable. Large glass windows, uninterrupted by dividing motions, can be quite safe but will appear very insecure to the occupant standing next to on 40 floors above the street. Sometimes the architect must make deliberate attempts to increase the apparent strength or solidness of the structure. This apparent safety may be more important than honestly expressing the buildings structure, because the untrained viewer cannot distinguish between real and perceived safety. The building designer needs to understand the behavior lf physical structures under load. An ability to intuit or “feel” structural behavior is possessed by those having much experience involving structural analysis, both qualitative and quantitative. The consequent knowledge of how forces, stresses, and deformations build up in different materials and shapes is vital to the development of this “sense”. Structural analysis is the process of determining the forces and deformations in structures due to specified loads so that the structure can be designed rationally, and so that the state of safety of existing structures can be checked. In the design of structures, it is necessary to start with a concept leading to a configuration which can then be analyzed. This is done so members can be sized and the needed reinforcing determined, in order to: a) carry the design loads without distress or excessive deformations (serviceability or working condition ); and b)to prevent collapse before a specified overload has been placed on the structure(safety or ultimate condition). Since normally elastic conditions will prevail undue working loads, a structural theory based on the assumptions of elastic behavior is appropriate for determining serviceability conditions. Collapse of a structure will usually occur only long after the elastic range of the materials has been exceeded at critical points, so that an ultimate strength theory based on the inelastic behavior of the materials is necessary for a rational determination of the safety of a structure against collapse. Nevertheless, an elastic theory can be used to determine a safe approximation to the strength of ductile structures (the lower bound approach of plasticity), and this approach is customarily followed in reinforced concrete practice. For this reason only the elastic theory of structures is pursued in this chapter. Looked at critically, all structures are assemblies of three-dimensional elements, the exact analysis of which is a forbidding task even under ideal conditions and impossible to contemplate under conditions of professional practice. For this reason, an important part of the analysts work is the simplification of the actual structure and loading conditions to a model which is susceptible to rational analysis. Thus, a structural framing system is decomposed into a slab and floor beams which in turn frame into girders carried by columns which transmit the loads to the foundations. Since traditional structural analysis has been unable to cope with the action of the slab, this has often been idealized into a system of strips acting as beams. Aldo, long-hand method have been unable to cope with three-dimensional framing systems, so that the entire structure has been modeled by a system of planar subassemblies, to be analyzed one at a time. The modern matrix-computer methods have revolutionized structural analysis by making it possible to analyze entire systems, thus leading to more reliable predictions about the behavior of structures under loads. Actual loading conditions are also both difficult to determine and to express realistically, and must be simplified for purposes of analysis. Thus, traffic loads on a bridge structure, which are essentially both of dynamic and random nature, are usually idealized into statically moving standard trucks, or distributed loads, intended to simulate the most severe loading conditions occurring in practice. The most important use of structural analysis is as a tool in structural design. As such, it will usually be a part of a trial-and error procedure, in which an assumed configuration with assumed dead loads is analyzed, and the members designed in accordance with the results of the analysis. This phase is called the preliminary designed ; since this design is still subject to change, usually a crude, fast analysis method is adequate. At this stage, the cost of the structure is estimated, loads a
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:[T0050]某11层10000平米框剪办公楼设计(建筑图结构图计算书)
链接地址:https://www.renrendoc.com/p-443754.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!