




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
垂径定理及其推论教学设计【教材分析】 本节是圆这一章的重要内容,也是本章的基础。它揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的内在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;由垂径定理的得出,使学生的认识从感性到理性,从具体到抽象,有助于培养学生思维的严谨性。同时,通过本节课的教学,对学生渗透类比、转化、数形结合、方程、建模等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力。所以它在教材中处于非常重要的位置。【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面:知识目标:使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。培养学生观察能力、分析能力及联想能力。方法与过程目标:经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。情感态度与价值观目标:在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。【重点与难点】重点:垂径定理及其推论的发现、记忆与证明。难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。【学生分析】 九年级学生已了解圆的有关概念;但根据皮亚杰的认知发展理论:这个阶段的学生思维正处于具体思维向抽象思维发展、逻辑思维向形式思维发展、内部心理上逐步朝着自我反省的思维发展。虽然他们具有一定的数学活动经验、生活经验和操作技能,会进行简单的说理,但他们的逻辑思维能力和抽象思维能力还比较薄弱。对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。【教学方法】鉴于教材特点及九年级学生的知识基础,根据教学目标和学生的认知水平,让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验-观察-猜想-证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。同时,在教学中,我充分利用教具和课件,提高教学效果,在实验、演示、操作、观察、练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。【设计理念】在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。【教师准备】问题导读-评价单、问题生成-评价单、问题训练-评价单【教学过程的设计】问题情境师生活动设计意图创设情境,导入新课1. 将你手中的圆沿圆心对折,你会发现圆是一个什么图形?2. 将手中的圆沿直径向上折,你会发现折痕是圆的一条弦,这条弦被直径怎样了?3. 一个残缺的圆形物件,你能找到它的圆心吗?4. 赵州桥是我国古代桥梁史的骄傲,我们能求出主桥拱的半径吗?合作交流,探究新知1. 圆的对称性(探究)圆是轴对称图形吗?它有几条对称轴?分别是什么?2. 垂径定理(思考)如图 :AB是O的一条弦,作直径CD,使CDAB,垂足E。 这个图形是对称图形吗 你能发现图中有哪些相等的线段和弧?请说明理由。 你能用一句话概括这些结论吗?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。 你能用几何方法证明这些结论吗? 你能用符号语言表达这个结论吗?3垂径定理的推论如上图,若直径CD平分弦AB则直径CD是否垂直且平分弦所对的两条弧?如何证明?你能用一句话总结这个结论吗?(即推论:平分弦的直径也垂直于弦,并且平分弦所对的两条弧)如果弦AB是直径,以上结论还成立吗?例题示范,变式练习例1.如图。在O中弦AB的长为8cm,圆心O到AB的距离OD=3cm,则O的半径为 cm(1) 连结什么可得到一个直角三形?(2) 利用什么知识可以解得半径。(3) 从中你可总结出利用垂径定理计算的什么技巧?例2.如图,是赵州桥的几何示意图,若其中AB是桥的跨度为37.4米,桥拱高CD为7.2米,你能求出它所在的圆的主桥拱半径吗?灵活应用,提高能力1. 已知:如图,AB是O直径,CD是弦,AECD,BFCD.求证:ECDF .AOBECDF2、已知:如图,O中 AB为弦C为AB的中点,OC交AB 于D ,AB = 6cm ,CD=1cm. 求O 的半径OA. 轻松过关发放问题训练评价单,让学生独立完成其练习题归纳总结,形成体系 通过这堂课的学习你有什么收获?知道了哪些新知识?学会了做什么上课之前先检查学生对问题导读评价单的完成情况将学生分组,然后由小组长发放问题生成评价单,然后小组根据评价单中的问题进行讨论,交流。然后由组长进行汇总,选出小组代表进行发言我们一起来完成这个结论的证明教师出示问题,前两个问题可以由学生动手操作,并观察结果,得到初步结论。后两个问题作为问题情境,激发学生学习兴趣,引导学生进一步的学习。圆的对称性由学生发现并总结,教师进行板书。教师出示问题学生小组讨论,发现垂径定理的证明方法,并由学生代表发言。学生尝试将文字转变为符号语言,用几何符号表达定理的逻辑关系。教师更正。教师明确定理中的条件和结论,初步理解“知二得三”口诀的含义。教师提出问题,引导学生进行思考和讨论。学生尝试得出垂径定理和推论,教师规范并板书。教师提醒学生此中的弦一定不能是直径。在例1中教师可通过问题设置,引导学生联系弦、半径、弦心距或者拱高等因素,从而构成直角三角形,利用勾股定理解决问题。这也是解决计算问题的主要方法,教师一定要重点重申。此题是垂径定理计算题中另一种题型,主要利用将垂径定理、勾股定理、方程的知识进行综合应用。教师在提示后让学生进行小组讨论,然后进行总结,得出结论,让学生做好笔记,养成良好的学习习惯。学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”生独立完成问题评价单中的练习题,老师进行讲评,主要培养学生独立解题能力学生畅所欲言,从知识、方法、情感态度等方面谈收获,谈体会,并结合本节教学目标,发现在学习中学会了什么,还存在哪些问题。教师循序渐进地将一个个的问题抛出,引导学生一步步地进行思考和总结,调动学生的学习积极性,培养学生的学习习惯。培养学生的观察能力,概括能力,分析能力,从而调动学生学习积极性,使学生主动的获得知识让学生进一步熟悉垂径定理的条件与结论,并为探索垂径定理的推论打基础 让学生亲自探索出各条推论,以使学生以后在应用中可明明白白不加怀疑的应用知二推三,并培养学生的团队意识及资源共享的意识垂径定理的应用,了解圆中辅助线的添法,并规范论证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美甲合同转让协议书模板
- 花草租赁解除合同协议书
- 船员培训专项协议书模板
- 网页设计团队外包协议书
- 风力发电安装转让协议书
- 签了购房协议不给签合同
- 电梯加楼梯施工合同协议
- 职工餐厅承包合同协议书
- 门店分红股东协议书范本
- 腺肌病的护理
- 北京市朝阳区2024-2025学年高一下学期期末语文试题(含答案)
- 安徽高危人员管理办法
- 牙外伤护理配合课件
- 2025年辅警招聘考试试题及参考答案
- 2025年湖南省高考物理真题
- 2025年吉林省中考数学试卷真题(含答案详解)
- 党课课件含讲稿:以作风建设新成效激发干事创业新作为
- 军事知识科普儿童课件
- 谷歌付费协议书
- 爆破三员安全培训课件
- 《安全生产考核巡查办法》知识培训
评论
0/150
提交评论