您若下载本次文件,将获得(CAD图纸+word文档)源文件哦!
以下为本次文件的目录及部分图纸截图
【需要其他机械类资料可以联系QQ97666224】
摘要
驱动桥位于传动系统的末端,作用为改变传动方向增大转矩,是汽车四大总成之一,其性能好坏是评价重型货车整体性能的重要指标。由于重型货车采用的发动机输出功率大,所以对驱动桥的要求就更加严格。目前新型重型货车对载重量和行驶速度都有着更高的要求,所以搭配高效、可靠、传动效率高的驱动桥显得尤为重要。同时对更先进的单级减速驱动桥的设计已成为未来驱动桥的发展方向。本文已传统驱动桥设计的模式进行重型货车驱动桥设计。依照技术指标要求翻阅相关资料比较相近产品确定主要部件的结构和参数;深入研究对比之后确定总体设计方案;对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,整体式桥壳,全浮式半轴等的强度进行校核并且对支承轴承进行了寿命校核。
关键字:重型货车 驱动桥 单级减速
Title The design of heavy trucks drive axle
Abstract
Drive axle at the end of the transmission system, the role of the drive to change the direction of increasing the torque assembly is one of four cars, the performance is good or bad is to evaluate the overall performance of heavy goods vehicles, an important indicator. Because of heavy goods vehicles using the engine output power, so the drive axle the more stringent requirements. New heavy goods vehicles on the load current and speed have a higher demand, so with efficient, reliable, high transmission efficiency of the drive axle is very important. Meanwhile, more advanced single-stage gear-driven design of the bridge has become the future development direction of drive axle.This article has been designed for the traditional model of drive axle heavy goods vehicles drive axle design. Accordance with the technical requirements of references, compare similar products to determine the structure and parameters of the main components; be determined after further study compared the overall design; on the driving and driven bevel gear, planetary gear differential cone, axle gears, the overall axle , full floating axle, etc., and check the strength of a bearing on life support check
Keywords: Heavy truck Drive axle Single Reduction
目录
摘要1
1 前言5
2 总体方案论证7
2.1 驱动桥结构形式选择7
2.2.主减速器结构形式选择7
2.3差速器的结构形式选择9
3 主减速器设计10
3.1 主减速器结构方案分析10
3.2 轴承支撑形式11
3.3 主减速器基本参数选择及设计计算12
3.3.1 主减速器计算载荷确定12
3.3.2 主减速器基本参数的选择13
3.3.3 主减速器锥齿轮主要参数15
3.3.4 主减速器锥齿轮的材料选用16
3.3.5 主减速器锥齿轮的强度计算17
3.3.6 主减速器轴承的计算21
4 差速器设计28
4.1 对称式圆锥行星齿轮差速器的差速原理28
4.2 对称式圆锥行星齿轮差速器的结构29
4.3 对称式圆锥行星齿轮差速器的设计30
4.3.1 差速器齿轮的基本参数的选择30
4.3.2 差速器齿轮的几何计算32
4.3.3 差速器齿轮的强度计算33
5. 驱动半轴的设计35
5.1 全浮式半轴计算载荷的确定35
5.2 全浮式半轴的杆部直径的初选36
5.3 全浮式半轴的强度计算36
5.4 半轴花键的强度计算37
6 驱动桥壳的设计38
6.1 铸造整体式桥壳的结构38
6.2 桥壳的受力分析与强度计算39
6.2.1 桥壳的静弯曲应力计算40
6.2.2 在不平路面冲击载荷作用下的桥壳强度计算41
6.2.3 汽车以最大牵引力行驶时的桥壳强度计算42
6.2.4 汽车紧急制动时的桥壳强度计算44
7 结论47
8 致谢48
9 参考文献49








