19.1变量与函数教学设计说明.doc_第1页
19.1变量与函数教学设计说明.doc_第2页
19.1变量与函数教学设计说明.doc_第3页
19.1变量与函数教学设计说明.doc_第4页
19.1变量与函数教学设计说明.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

19.1变量与函数第一课时教学设计说明 教材分析、学情分析是教学设计的前提和基础 一、教材分析 1、对教材的微观分析,所谓教材的微观分析主要是指对教材中单一课时内容进行分析。 首先,应该明确教材内容在数学课程标准中的具体要求。2011版课程标准给出的函数概念教学要求:通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值、值域等概念;知道常值函数。新课标中函数的目标是通过简单实例,了解常量、变量的意义。能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。能结合图像对简单实际问题中的函数关系进行分析。能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。能用适当的函数表示法刻画某些实际问题中变量之间的关系。结合对函数关系的分析,尝试对变量的变化规律进行初步预测。析此目标,将其分解为具体的、可操作的、可检测的行为要求,即:通过简单实例,说出变量、常量的意义。在具体问题情境中,能识别变量与常量。能结合具体实例认识函数,并能判断两个变量之间是否存在函数关系。能举出可用函数表示的现实生活中的实例。值得注意的是,课标中的具体目标是学生在本学段学习结束时在认知等水平上应达到的最基本要求,不是当前学生学习的目标要求,更不是学生学习的最高标准。 其次,要熟悉教材内容在教材体系中的地位和作用。关于函数,初中数学主要研究函数的概念、正比例函数、反比例函数、一次函数、二次函数等,高中数学重点研究指数函数、对数函数、幂函数、三角函数、数列(以自然数集或其子集为定义域的函数)以及解析几何中的曲线方程(其实是一类隐函数),这些内容在中学数学中无论数量还是影响力都居于重要地位。作为初中数学四大学习领域之一的“数与代数”,其“四大主干”的三个数、式、方程(不等式)都可以用函数来“统帅”(另一个主干是函数自身):数集的发展为函数的定义域和值域研究作了准备;“式”是函数关系的重要表达形式,“式”也可以看做是关于式中某个(或某些)字母的函数;方程或不等式的解集则可以理解为使左右两个函数值相等或不等的公共定义域的子集。显然,函数在“数与代数”领域中发挥着主导作用。函数的概念是本章内容的基础,一次函数是最简单的线性函数,正比例函数是特殊的一次函数。正比例函数的研究思路、研究方法对一次函数的研究具有方法论意义,用函数的观点看一元一次方程、一元一次不等式和二元一次方程组,不仅体现了“数与代数”领域中重要知识点函数、方程(组)、不等式之间的内在联系,而且更加突出了函数的核心地位。 最后需要将教材内容放在整个数学学科的大框架之中,从宏观上了解它在学科体系中的地位和作用。例如,本节内容中的函数概念,它是近代数学最基本的概念之一,它的引入是数学发展史上的一个重要里程碑,它使常量数学进入变量数学,实现了数学发展史上的一次重大转折,许多数学分支(如代数、三角、解析几何、微积分、实变函数、复变函数、常微分方程、偏微分方程、泛函分析等)都是以函数为中心展开研究的,函数已成为整个数学学科体系中的一个核心概念。 二、学情分析 1、对学生已有知识经验分析 学生在小学时学到加减乘除运算法则,乘法口诀,就体现了运算说,一种对应关系。还有按规律数火柴棒的经历,也体现了一种对应。学生在六年级上学期学习圆和扇形时,就初步感知了两个变量的依赖关系;学习数据的表示(统计图表)时,认识数字与图形的联系和对应关系。七年级年级学习数轴时,初步接触点与数的对应;学习二元一次方程时,认识二元方程中两个未知量取值的不确定和确定的依赖关系;学习一元不等式时,认识符合不等关系的一类量;在几何教学中,函数关系的例子非常多:像线段中点的定义、角的平分线的定义就揭示两个量之间的关系,还有两个角互余、互补,揭示的都是两个变量之间的关系。作为教师,一方面要在学习这些知识的过程中有意识地不断渗透变量的意识即在现实生活中存在着大量变量,且变量之间并不是独立的,而是相互联系的;另一方面,通过这些知识使学生熟悉把几何问题代数化的方法,为函数的代数和几何方法的结合打好基础,为后来函数的学习作好充分的准备。学生在七年级上学期用字母表示数,代数式的值的教学是培养学生对变量的认识、树立初步的函数观念的良好契机。数、字母、代数式之间的关系实际上就是数、自变数、函数之间的关系。代数式本身就是代数式所含字母的函数(函数解析说),代数式求值实际上就是给自变数一个确定的值,求对应的函数值。在字母表示数的教学中教师要促使学生感受到变量的意义,再让学生通过代数式的值与代数式中字母取值的之间的相互依赖关系,感受到变量之间的相互联系。在七年级下学期学习实数轴时,认识了实数与数轴上点的对应关系,实数大小的变化与实数轴所对应点的运动依赖关系;学习平面直角坐标系时,建立平面上的点和有序实数对的一一对应关系。 上述分析表明,课本在正式引进函数概念之前,早已结合有关知识,渗透了函数的概念和对应的思想:通过代数式的值的概念,可以很好给学生渗透一些变量间的依存关系以及变量的变化范围等方面的初步知识,学习平面上的点和有序实数对间的一一对应关系,为学生学习函数的图形做好了准备,此外,方程(特别是二元一次方程)、等式的学习以及有关几何量的计算,进一步促进学生认识两个量之间是相互关联的,体会到两个变量之间的相互依存关系,都为学生学习函数知识作了很好的准备!此阶段可谓概念渗透阶段,使学生逐渐认识变量及变量之间的相互关系。 2、可能存在的难点分析 一般地,中学生在初中和高中两个阶段将面临数学课程对他们的四次大的难关:算术到代数的过渡(初一)、代数到几何的过渡(初二)、常量数学。变量数学的过渡(初三、高一)、有限到无限的过渡(高二)。由常量数学到变量数学的过渡,以函数要领的引入为标志,宣布了数学问题的研究由处理相对稳定的数学问题进入处理运动、变化的量与量关系的数学问题的领域,抽象层次的再一次提升;由数到形,又到数形结合,研究量与量之间运动、变化过程中表现出的关系,则又是一类研究对象与研究方法的转变而导致的不适应,就出现了由常量数学到变量数学过渡的这一难关。在函数概念认识上,谁是自变量,谁是函数,学生同样存在困惑。实际上,把一个变量叫做函数是相对的,这里,他一方面是指,它必须依赖于(即相对于)某个成为自变量的量,例如,一辆汽车用以每小时100公里的速度行驶,这辆汽车行驶的路程S可以看成时间t的函数。而不是说,路程这个量,命中注定是函数,我们也可以把时间看成路程的函数。另一方面,在有些问题中,路程可能就是一个常量。在初中阶段,为降低要求,常常会指明谁是谁的函数。在函数概念的认识上还会存在因果关系的误解。我们说“y是x的函数”并不意味y和x之间有什么实际生活上因果关系,或计算关系。有的老师为了学生便于理解,说“函数和它自变量的关系是,你变,我也变”。这种说法是错误的。因为当自变量在它的允许取值范围内取不同数值时,并不要求函数也取不同值。例如对于地铁路线来说,票价是站数的函数,但站数取1,2,3?时,票价都是3元。如果改成“你定我也定”,则不但是准确的,而且入骨三分。 根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这也符合建构主义的教学理论 本节课对几个重要环节的处理方法是: 为激发起学生学习的兴趣,引入三个问题:举出初中学过的一些函数、回忆初中函数的定义、 利用初中函数的定义解决问题“”是否为函数通过学生分组讨论后发现由于受认知能力的影响,利用初中所学函数知识很难回答这个问题,形成认知冲突,让学生带着悬念、带着认知冲突学习后面的知识,这样有利于激发学生的学习欲望 为了让学生抽象概括出函数的概念,通过对三个实际问题的分析、自学,让学生认识到生活中充满着变量间的依赖关系,由于实际背景的建立,为学生理解函数概念打下了感性基础在学习实例一时,我设计了三个递进的问题来引导学生用集合与对应的语言来刻画函数关系对后两个实例采取让学生先自学,老师再提问的方式来引导学生思考;通过对关键词的强调和引导,给学生思考、探索的空间,让学生发现、概括出它们的共同特征

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论