



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18.4 一元二次方程的根与系数的关系教学目标 知识与能力:1、在理解的基础上掌握一元二次方程根与系数的关系;2、能运用根与系数的关系检验两数是否为原方程的根;3、已知一根求另一根及系数。过程与方法:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。 情感、态度与价值观:通过情景教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。教学重、难点 重点:一元二次方程根与系数的关系的应用。 难点:对一元二次方程根与系数的关系的理解和推导。一、创设情景,引入新课 师:在上一节“一元二次方程的根的判别式”中,我们讲了一个小秘诀,就是不解方程,就能知道一元二次方程的根的情况。同学们还记得这个小秘诀是什么吗?生:通过“”的值来判断一元二次方程的根的情况。 当“0”时,方程有两个不相等的实数根; 当“=0”时,方程有两个相等的实数根; 当“0”时,方程没有实数根。师:回答的真好。其实啊,一元二次方程还有一个小秘密,而且是一个非常重要的秘密,同学想知道吗?生:想。师:那么这节课我们一起来探究这个秘密。一元二次方程的根与系数的关系(板书课题)二、探索新知,解决问题1、两人一组,完成问题卡片上的表格1.方程x1x2x1 +x2x1x2x2+3x+2=0x2+2x1=0x23x4=0 表格1师:你发现了什么规律?请用语言叙述你发现的规律。 生: 师:若方程x2+px+q=0的两根是x1、x2,你能用式子表示出你发现的规律吗? 生:x1 +x2 = p,x1x2 = q 师:是不是所有的一元二次方程都具有这样的规律呢? 生:不一定。 师:为什么不一定呢? 生:因为这几个一元二次方程的二次项系数都是1,如果二次项系数不为1时,可能就不存在这样的关系了。 师:同学们观察的非常的仔细。那么对于一般的一元二次方程根与系数又会存在着怎样的关系呢?2、还是两个同学一组,完成问题卡片上的表格2。方程x1x2x1 +x2x1x29x26x+1=03x24x+1=03x2+7x+2=02x2+x+1=0 表格2师:观察表格2,你又有什么发现?你能用语言文字概括你的发现吗?生:学生认真思考,并回答。(学生总结的可能不是很全面,或者有的学生可能不能做出总结,要做适当的引导和补充)师:若一元二次方程ax2+bx+c= 0 (a0)的两个根为x1、x2,你能用式子表示你发现的规律吗?生:能。x1 +x2,x1x2。 师:我们的猜想是否正确呢? 生:思考回答。 师:请同学们认真阅读课本34页,看看课本上是怎么证明它的正确性的。 设一元二次方程ax2+bx+c= 0 (a0)的两个根为x1、x2,. (学生1上黑板演示) (学生2上黑板演示)韦达定理:如果一元二次方程ax2+bx+c= 0 (a0,0)的两个根为x1、x2,那么,x1 +x2,x1x2。三、应用新知例1:已知关于x的一元二次方程x26=(k+1)x的一个根是2,求方程的另一个根和k的值。方法1:解:设一元二次方程x2 6=(k+1)x的另一个根为x1,原方程转化成一般式为:x2 (k+1)x 6=0,a=1,b= (k+1),c= 6由韦达定理,可知: x1 +2=k+1 2 x1 = 6 解得 x1 = 3 k = 2方法2:x=2代入原方程中得,4 2(k+1) 6=0 解得k = 2将k = 2代入原方程,得 x2 + x 6=0 (x+3)( x2)=0 x+3=0或x2=0 即x1= 3,x2=2答:方程的另一个根是3,k的值是2.例2:已知x1 +x2是方程x2 x =3的两个根,求x1 +x2,x1x2,x12 +x22及x1x2的值。 解:原方程转换成一般形式为:x2 x 3=0. 由韦达定理,可得 x1 +x2=1, x1x2= 3 x12 +x22=(x1 +x2)22x1x2=12(3)=7 (x1x2)2=(x1 +x2)24x1x2=14(3)=13 x1x2= 答:四、巩固新知,提高认知 课本36页,练习1,2,3,4.五、课堂小结 1、韦达定理:如果一元二次方程ax2+bx+c= 0 (a0,0)的两个根为x1、x2,那么,x1 +x2,x1x2。(要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年济南市章丘区卫生健康局所属事业单位公开招聘工作人员(116人)考前自测高频考点模拟试题含答案详解
- 2025湖北大学博士后、师资博士后招聘考前自测高频考点模拟试题附答案详解(典型题)
- 2025年4月第二批永州市本级就业见习岗位招聘14人考前自测高频考点模拟试题及一套参考答案详解
- 甜甜的秘密教学设计小学音乐人音版五线谱三年级下册-人音版(五线谱)
- 2025年甘肃省兰州新区石化产业投资集团有限公司急需紧缺专业技术岗位招聘14人模拟试卷完整答案详解
- 2025江苏苏州市吴江区引进教育重点紧缺人才12人模拟试卷及答案详解(名师系列)
- 2025第十三届贵州人才博览会贵阳幼儿师范高等专科学校引进高层次及急需紧缺人才模拟试卷及一套参考答案详解
- 2025安徽水安建设集团股份有限公司校园招聘142人笔试题库历年考点版附带答案详解
- 2025贵州大方县人民医院专项引进高层次急需紧缺人才模拟试卷及一套答案详解
- 2025江西青原区文化馆招聘就业见习人员1人考前自测高频考点模拟试题及答案详解(典优)
- 2026年高考作文备考训练之“自我接纳-自我认知-自我超越”作文讲评
- 2025年河北石家庄交通投资发展集团有限责任公司公开招聘操作类工作人员336人考试参考题库及答案解析
- 幼儿园大班数学《小熊种玉米》课件
- 公交车广告承包合同5篇
- 2025年秋新北师大版数学3年级上册全册同步教案
- GB/T 2072-2007镍及镍合金带材
- GB/T 13460-2016再生橡胶通用规范
- 基础观感验收自评报告
- 班级管理(第3版)教学课件汇总全套电子教案(完整版)
- 公路桥梁工程施工安全专项风险评估报告
- T∕ACSC 02-2022 中医医院建筑设计规范
评论
0/150
提交评论