了解同底数幂除法的运算及其应用.doc_第1页
了解同底数幂除法的运算及其应用.doc_第2页
了解同底数幂除法的运算及其应用.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.了解同底数幂除法的运算及其应用师下面我们就先来看同底数幂除法的几个特例,并从中归纳出同底数幂除法的运算性质.(出示投影片1.5 B)做一做:计算下列各式,并说明理由(mn).(1)108105;(2)10m10n;(3)(3)m(3)n.生解:(1)108105=(105103)105逆用同底数幂乘法的性质=103;生解:(1)108105=幂的意义=1000=103;生解:(2)10m10n=幂的意义=10mn乘方的意义(3)(3)m(3)n=幂的意义=约分=(3)mn乘方的意义师我们利用幂的意义,得到:(1)108105=103=1085;(2)10m10n=10mn(mn);(3)(3)m(3)n=(3)mn(mn).观察上面三个式子,运算前后指数和底数发生了怎样的变化?你能归纳出同底数幂除法的运算性质吗?生从上面三个式子中发现,运算前后的底数没有变化,商的指数是被除数与除数指数的差.生从以上三个特例,可以归纳出同底数幂的运算性质:aman=amn(m,n是正整数且mn).生小括号内的条件不完整.在同底数幂除法中有一个最不能忽略的问题:除数不能为0.不然这个运算性质无意义.所以在同底数幂的运算性质中规定这里的a不为0,记作a0.在前面的三个幂的运算性质中,a可取任意数或整式,所以没有此规定.师很好!这位同学考虑问题很全面.所以同底数幂的除法的运算性质为:aman=amn(a0,m、n都为正整数,且mn)运用自己的语言如何描述呢?生同底数幂相除,底数不变,指数相减.师能用幂的意义说明这一性质是如何得来的吗?生可以.由幂的意义,得aman=amn.(a0)例1计算:(1)a7a4;(2)(x)6(x)3;(3)(xy)4(xy);(4)b2m+2b2;(5)(mn)8(nm)3;(6)(m)4(m)2.(7)地震的强度通常用里克特震级表示.描绘地震级数字表示地震的强度是10的若干次幂.例如用里克特震级表示地震是8级,说明地震的强度是107.1992年4月,荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震.加利福尼亚的地震强度是荷兰地震强度的多少倍?分析:开始练习同底数幂的除法运算时,不提倡直接套用公式,应说明每一步的理由,进一步体会乘方的意义和幂的意义.解:(1)a7a4=a74=a3;(a0)(2)(x)6(x)3=(x)63=(x)3=x3;(x0)(3)(xy)4(xy)=(xy)41=(xy)3=x3y3;(xy0)(4)b2m+2b2=b(2m+2)2=b2m;(b0)(5)(mn)8(nm)3=(nm)8(nm)3=(nm)83=(nm)5;(mn)(6)(m)4(m)2=(m)42=(m)2=m2.(m0)(7)根据题意,得:106104=1064=102=100所以加利福尼亚的地震强度是荷兰的100倍.评注:1aman=amn(a0,m、n是正整数,且mn)中的a可以代表数,也可以代表单项式、多项式等.2(5)小题,(mn)8(nm)3不是同底的,而应把它们化成同底,或将(mn)8化成(nm)8,或把(nm)3化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论