常用傅里叶_拉普拉斯_Z变换表.doc_第1页
常用傅里叶_拉普拉斯_Z变换表.doc_第2页
常用傅里叶_拉普拉斯_Z变换表.doc_第3页
常用傅里叶_拉普拉斯_Z变换表.doc_第4页
常用傅里叶_拉普拉斯_Z变换表.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

时域信号弧频率表示的傅里叶变换注释1线性2时域平移3频域平移, 变换2的频域对应4如果值较大,则会收缩到原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta函数。5傅里叶变换的二元性性质。通过交换时域变量 和频域变量 得到.6傅里叶变换的微分性质7变换6的频域对应8表示 和 的卷积 这就是卷积定理9矩形脉冲和归一化的sinc函数10变换10的频域对应。矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。11tri 是三角形函数12变换12的频域对应13高斯函数 exp( t2) 的傅里叶变换是他本身. 只有当 Re() 0时,这是可积的。141516a017变换本身就是一个公式18() 代表狄拉克函数分布. 这个变换展示了狄拉克函数的重要性:该函数是常函数的傅立叶变换19变换23的频域对应20由变换3和24得到.21由变换1和25得到,应用了欧拉公式: cos(at) = (eiat + e iat) / 2.22由变换1和25得到23这里, n 是一个自然数. (n)() 是狄拉克函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多项式。24此处sgn()为符号函数;注意此变换与变换7和24是一致的.25变换29的推广.26变换29的频域对应.27此处u(t)是单位阶跃函数; 此变换根据变换1和31得到.28u(t)是单位阶跃函数,且 a 0.34狄拉克梳状函数有助于解释或理解从连续到离散时间的转变. 附录A 拉普拉斯变换及反变换1.拉氏变换的基本性质附表A-1 拉氏变换的基本性质1线性定理齐次性叠加性2微分定理一般形式初始条件为零时3积分定理一般形式初始条件为零时4延迟定理(或称域平移定理)5衰减定理(或称域平移定理)6终值定理7初值定理8卷积定理2常用函数的拉氏变换和z变换表附表A-2 常用函数的拉氏变换和z变换表序号 拉氏变换时间函数Z变换11(t)12345 67891011121314153 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设是的有理真分式,即 ()式中,系数和都是实常数;是正整数。按代数定理可将展开为部分分式。分以下两种情况讨论。(1)无重根:这时,F(s)可展开为n个简单的部分分式之和的形式,即 (F-1)式中,是特征方程A(s)0的根;为待定常数,称为在处的留数,可按下列两式计算: (F-2)或 (F-3)式中,为对的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 (F-4)(2)有重根:设有r重根,F(s)可写为=式中,为F(s)的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论