评语.doc

车床尾座体工艺规程制订及工装夹具设计【3张CAD图纸+毕业论文】【答辩通过】

收藏

压缩包内文档预览:
预览图
编号:445127    类型:共享资源    大小:3.67MB    格式:RAR    上传时间:2015-06-30 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
车床 尾座体 工艺 规程 制订 制定 工装 夹具 设计 全套 cad 图纸 毕业论文 答辩 通过
资源描述:

摘要

尾座体是车床上的重要的部件之一,是车床上用以支撑轴类零件车削加工和实施钻孔的主要车床附件。本文针对某类给定的尾座体进行了加工工艺与工装的设计,完成了以下工作:

1.概述了尾座体的技术和现状发展;

2.对尾座体进行了工艺分析,并提出了两种方案进行比较;

3.编制了尾座体的工艺规程,完成了其工序卡的设计;

4.针对工艺中的某重要工序,设计完成了一套镗孔夹具,包括定位元件,夹紧机构、对刀块、夹具体的设计并分析了定位误差。


关键词 设计;工装;工艺;尾座体


Lather tail the craft work of the body pack a design

Abstract

stalk spare parts, the car pares to process the main lather enclosure that drills a hole with implementation.This text aims at a certain the tail body giving certainly carried on to process the design that craft and work pack and completed once work:

1.All said a tail the technique and present condition development of the body;

2.Carried on craft analysis to the tail body, and put forward two kinds of projects to carry on a comparison;

3.Drew up a tail body of craft regulations, completed the design of its work preface card;

4.Aim at a craft in of some important work preface, designed to complete a set of Xian slot tongs, including fixed position component, clipped tight organization, to the knife piece, clip a concrete design and analyzed a fixed position error margin.


Keywords design;  clamping;  craft;  tailstock


目录

摘要I

AbstractII

第1章 绪论1

1.1 课题来源1

1.2 课题背景及发展趋势1

1.3 夹具的基本结构及夹具设计的内容1

1.4 本章小结2

第2章 尾座体加工工艺规程设计3

2.1 零件的分析3

2.1.1 零件的作用3

2.1.2 零件的工艺分析3

2.2 加工的主要问题和工艺过程设计所应采取的相应措施4

2.2.1 确定毛坯的制造形式4

2.2.2 基面的选择4

2.2.3 确定工艺路线4

2.2.4 机械加工余量、工序尺寸及毛坯尺寸的确定5

2.2.5 确定主要工序工程中的切削用量7

2.3 本章小结17

第3章 专用夹具设计18

3.1 镗Ф75H6孔夹具设计18

3.1.1 定位基准的选择18

3.1.2 夹紧力的计算18

3.1.3 夹紧元件及动力装置确定19

3.1.4 镗套、镗模板及夹具体设计19

3.1.5 夹具精度及定位误差分析20

3.1.6 夹具设计及操作的简要说明20

3.2 本章小结22

结论23

致谢24

参考文献25

附录27


第1章绪论

1.1课题来源

本课题来源于指导教师所给众多题目之一。


1.2课题背景及发展趋势

加工工艺及夹具毕业设计是对所学专业知识的一次巩固,是在进行社会实践之前对所学各课程的一次深入的综合性的总复习,也是理论联系实际的训练。

机床夹具已成为机械加工中的重要装备。机床夹具的设计和使用是促进生产发展的重要工艺措施之一。随着我国机械工业生产的不断发展,机床夹具的改进和创造已成为广大机械工人和技术人员在技术革新中的一项重要任务。

材料、结构、工艺是产品设计的物质技术基础,一方面,技术制约着设计;另一方面,技术也推动着设计。从设计美学的观点看,技术不仅仅是物质基础还具有其本身的“功能”作用,只要善于应用材料的特性,予以相应的结构形式和适当的加工工艺,就能够创造出实用,美观,经济的产品,即在产品中发挥技术潜在的“功能”。

技术是产品形态发展的先导,新材料,新工艺的出现,必然给产品带来新的结构,新的形态和新的造型风格。材料,加工工艺,结构,产品形象有机地联系在一起的,某个环节的变革,便会引起整个机体的变化。

工业的迅速发展,对产品的品种和生产率提出了愈来愈高的要求,使多品种,对中小批生产作为机械生产的主流,为了适应机械生产的这种发展趋势,必然对机床夹具提出更高的要求。


内容简介:
哈尔滨理工大学专科生毕业论文 哈尔滨理工大学荣成学院本科生毕业设计(论文)任务书学生姓名:刘国锋 学号:0930060108学 院: 荣成学院 专业:机械设计制造及其自动化任务起止时间: 2013年02月25日至 2013年06月 21日毕业设计(论文)题目:车床尾座体工艺规程制订及工装设计毕业设计工作内容:1、实际调研,收集相关资料,完成开题报告;13周。2、结合生产实际,制订零件的机械加工工艺;3、填写各工序的工序卡;47周。4、设计指定工序的专用夹具,画出装配图;811周。5、设计零件的工作图;1213周。6、撰写毕业设计论文,准备答辩;1416周。注:要求全部用计算机绘图和打印文稿(交打印件和电子稿)资料:1、机械制造工艺学;2、机床夹具设计及图册;3、金属切削用量手册;4、相关的技术资料。指导教师意见: 签名:2013年 2 月 24 日系主任意见:签名:2013年2月 25日哈 尔 滨 理 工 大 学毕 业 设 计 题 目:车床尾座体工艺规程制订及工装设计 院、 系: 荣成学院 机械工程系 姓 名: 刘国锋 指导教师: 张宝海 系 主 任: 陶福春 2013 年 6 月 17 日哈尔滨理工大学荣成学院机械工程系机 械 加 工 工 序 卡产品型号零(部)件图号共 8页产品名称尾座体零(部)件名称第 1 页车 间工序号工序名称材料牌号4铣削毛坯种类毛坯外形尺寸每毛坯件数每台件数HT200如图11设备名称设备型号设备编号同时加工件数立式铣床X52K1夹 具 编 号夹 具 名 称切 削 液1通用夹具乳化液工序工时准终单件序号工 步 内 容工 艺 装 备主轴转速(r/min)切削速度(m/s)进给量(mm/s)切削深度(mm)走刀次数时间定额机动(min)辅助(min)1粗铣底平面硬质合金三面刃铣刀,游标卡尺3001.574.8211.131.042精铣底平面高速钢三面刃铣刀,游标卡尺80041.924110.291.043刮研底平面编制(日期)审核(日期)会签(日期)标记处数更改文件号签字日期标记更改文件号签字日期哈尔滨理工大学荣成学院机械工程系机 械 加 工 工 序 卡产品型号零(部)件图号共 8页产品名称尾座体零(部)件名称第 2 页车 间工序号工序名称材料牌号5铣削毛坯种类毛坯外形尺寸每毛坯件数每台件数HT200如图11设备名称设备型号设备编号同时加工件数立式铣床X52K1夹 具 编 号夹 具 名 称切 削 液2通用夹具乳化液工序工时准终单件序号工 步 内 容工 艺 装 备主轴转速(r/min)切削速度(m/s)进给量(mm/s)切削深度(mm)走刀次数时间定额机动(min)辅助(min)1铣上平面硬质合金三面刃铣刀3001.574.8211.131.04铣侧平面硬质合金三面刃铣刀3001.574.8211.131.04编制(日期)审核(日期)会签(日期)标记处数更改文件号签字日期标记更改文件号签字日期哈尔滨理工大学荣成学院机械工程系机 械 加 工 工 序 卡产品型号零(部)件图号共 8页产品名称尾座体零(部)件名称第 3 页车 间工序号工序名称材料牌号6镗削毛坯种类毛坯外形尺寸每毛坯件数每台件数HT200如图11设备名称设备型号设备编号同时加工件数卧式镗床T6181夹 具 编 号夹 具 名 称切 削 液3专用夹具乳化液工序工时准终单件序号工 步 内 容工 艺 装 备主轴转速(r/min)切削速度(m/s)进给量切削深度(mm)走刀次数时间定额机动(min)辅助(min)1刮孔前端面硬质合金镗刀,游标卡尺8002.663.2(mm/s)211.031.042粗镗75H6的孔硬质合金镗刀,游标卡尺10003.660.2(mm/r)212.032.613精镗75H6的孔硬质合金镗刀,游标卡尺10003.870.15(mm/r)0.512.691.864刮孔后端面硬质合金镗刀,游标卡尺8002.663.2(mm/s)211.031.04编制(日期)审核(日期)会签(日期)标记处数更改文件号签字日期标记更改文件号签字日期哈尔滨理工大学荣成学院机械工程系机 械 加 工 工 序 卡产品型号零(部)件图号共 8页产品名称尾座体零(部)件名称第 4 页车 间工序号工序名称材料牌号7镗削毛坯种类毛坯外形尺寸每毛坯件数每台件数HT200如图11设备名称设备型号设备编号同时加工件数卧式镗床T6181夹 具 编 号夹 具 名 称切 削 液3专用夹具乳化液工序工时准终单件序号工 步 内 容工 艺 装 备主轴转速(r/min)切削速度(m/s)进给量(mm/r)切削深度(mm)走刀次数时间定额机动(min)辅助(min)1粗镗42H7的孔硬质合金镗刀,游标卡尺10001.940.2210.251.042精镗42H7的孔硬质合金镗刀,游标卡尺15003.220.150.510.321.563粗镗25H7的孔硬质合金镗刀,游标卡尺10001.540.2210.211.044精镗25H7的孔硬质合金镗刀,游标卡尺15003.150.150.510.241.045刮图示5个端面硬质合金镗刀8002.663.2(mm/s)211.031.04编制(日期)审核(日期)会签(日期)标记处数更改文件号签字日期标记更改文件号签字日期哈尔滨理工大学荣成学院机械工程系机 械 加 工 工 序 卡产品型号零(部)件图号共 8页产品名称尾座体零(部)件名称第 5 页车 间工序号工序名称材料牌号8镗削毛坯种类毛坯外形尺寸每毛坯件数每台件数HT200如图11设备名称设备型号设备编号同时加工件数卧式镗床T6181夹 具 编 号夹 具 名 称切 削 液2通用夹具乳化液工序工时准终单件序号工 步 内 容工 艺 装 备主轴转速(r/min)切削速度(m/s)进给量(mm/s)切削深度(mm)走刀次数时间定额机动(min)辅助(min)1粗镗35H9的孔硬质合金镗刀,游标卡尺10001.540.21.510.231.042精镗35H9的孔硬质合金镗刀,游标卡尺15003.170.150.510.291.56编制(日期)审核(日期)会签(日期)标记处数更改文件号签字日期标记更改文件号签字日期哈尔滨理工大学荣成学院机械工程系机 械 加 工 工 序 卡产品型号零(部)件图号共 8页产品名称尾座体零(部)件名称第 6 页车 间工序号工序名称材料牌号9钻削毛坯种类毛坯外形尺寸每毛坯件数每台件数HT200如图11设备名称设备型号设备编号同时加工件数立式钻床Z5351夹 具 编 号夹 具 名 称切 削 液2通用夹具乳化液工序工时准终单件序号工 步 内 容工 艺 装 备主轴转速(r/min)切削速度(m/s)进给量(mm/r)切削深度(mm)走刀次数时间定额机动(min)辅助(min)1钻上平面25H7孔麻花钻,游标卡尺9000.960.25110.081.042铰上平面25H7孔机用铰刀3000.11.10.510.291.563锪上平面45的沉孔高速钢钻头2000.120.23110.071.77编制(日期)审核(日期)会签(日期)标记处数更改文件号签字日期标记更改文件号签字日期哈尔滨理工大学荣成学院机械工程系机 械 加 工 工 序 卡产品型号零(部)件图号共 8页产品名称尾座体零(部)件名称第 7 页车 间工序号工序名称材料牌号10钻削毛坯种类毛坯外形尺寸每毛坯件数每台件数HT200如图11设备名称设备型号设备编号同时加工件数立式钻床Z5351夹 具 编 号夹 具 名 称切 削 液1通用夹具乳化液工序工时准终单件序号工 步 内 容工 艺 装 备主轴转速(r/min)切削速度(m/s)进给量(mm/r)切削深度(mm)走刀次数时间定额机动(min)辅助(min)1钻底平面22和20H7孔可调刀径钻头,游标卡尺9000.960.25111.031.042锪底平面45内沉孔可调刀径钻头,游标卡尺2000.120.23110.071.773铰20H7孔机用铰刀5000.11.10.510.291.56编制(日期)审核(日期)会签(日期)标记处数更改文件号签字日期标记更改文件号签字日期哈尔滨理工大学荣成学院机械工程系机 械 加 工 工 序 卡产品型号零(部)件图号共 8页产品名称尾座体零(部)件名称第 8 页车 间工序号工序名称材料牌号11铣削毛坯种类毛坯外形尺寸每毛坯件数每台件数HT200如图11设备名称设备型号设备编号同时加工件数立式铣床X52K1夹 具 编 号夹 具 名 称切 削 液1通用夹具乳化液工序工时准终单件序号工 步 内 容工 艺 装 备主轴转速(r/min)切削速度(m/s)进给量(mm/s)切削深度(mm)走刀次数时间定额机动(min)辅助(min)1粗铣底平面各槽硬质合金三面刃铣刀,游标卡尺3001.574.8211.131.042精铣底平面60x20槽高速钢三面刃铣刀,游标卡尺80041.924110.291.043刮研底平面60x20槽4给60x20槽清根编制(日期)审核(日期)会签(日期)标记处数更改文件号签字日期标记更改文件号签字日期 机 械 加 工 工 艺 过 程 卡 片产品型号零(部)件图号第 1 页产品名称尾座体零(部)件名称共 1 页材料牌号HT200毛坯种类铸件毛坯外形尺寸见毛坯图每毛坯件数每台件数备注工序号工序名称工 序 内 容车间工段设备工艺装备工时准终单件1铸造铸造2时效处理自然时效3划线检出合格品标尺4铣削铣底平面铣工X52K立式铣床砂纸,刮刀5铣削铣上平面、侧平面铣工X52K立式铣床6镗孔粗、精镗直径75孔镗工T618卧式镗床7镗孔粗、精镗直径42孔镗工T618卧式镗床8镗孔粗、精镗直径35孔镗孔T618卧式镗床9钻孔钻、铰直径25孔并锪45沉头孔钻工Z535立式钻床10铣削加工底平面直径20和直径22的底孔及锪直径45底孔钻工Z535立式钻床11钻孔粗铣底平面各槽并精铣60x20横槽铣工X52K立式铣床砂纸,刮刀12毛刺清理毛刺钢锉,砂纸,刮刀13终检14整理表面涂漆,防止表面锈蚀,入库编制 (日期)审核 (日期)会签 (日期)处 数更改文件号签字日期标记处数更改文件号签字日期 毕业设计(论文)开 题 报 告学生姓名 刘国锋 学 号 0930060108 专 业 机械设计制造及其自动化 班 级 机械 09-1 指导教师 张宝海 2013年03月27日课题题目及来源:课题题目:车床尾座体工艺规程制订及工装设计课题来源:指导老师课题研究的意义和国内外研究现状:通过对加工工艺规程的设计,可以了解了加工工艺对生产、工艺水平有着极其重要的影响。生产规模的大小、工艺水平的高低以及解决各种工艺问题的方法和手段都要通过机械加工工艺来体现机床夹具已成为机械加工中的重要装备。机床夹具的设计和使用是促进生产发展的重要工艺措施之一。随着我国机械工业生产的不断发展,机床夹具的改进和创造已成为广大机械工人和技术人员在技术革新中的一项重要任务。当今世界,工业发达国家对机床工业高度重视,竞相发展机电一体化、高质量、高精、高效、自动化先进机床,以加速工业和国民经济的发展。机床行业,随科技、特别是微电子、计算机技术的进步而不断发展。美、德、日三国是当今世界上机床科研、设计、制造和使用上,技术最先进、经验最多的国家。课题研究的主要内容和方法,研究过程中的主要问题和解决办法:1. 结合生产实际,制定零件的机械加工工艺;2. 填写工序的工序卡;3. 设计制定工序的专用夹具,画出装配图;4. 设计零件的工作图.根据毕业设计所给出的技术要求和原始数据来完成尾座提的机械加工工艺及夹具设计根据零件图可知,主要进行孔加工及表面的加工,孔的精度要求高。在加工时为了提高劳动效率,降低成本,设计加工零件需要设计专用夹具。本课题主要是设计尾座体的加工工艺及家具的设计,在设计中采用先设计该尾座体的加工工艺再根据加工工艺来选取夹具的设计的方案和夹具的具体设计,而设计的重点是夹具的设计。课题研究所需的参考文献: 1 刘德荣组合夹具结构简图的初步探讨,组合夹具,1982,15322 孙已德机床夹具图册机械工业出版社,1984:20233 贵州工学院机械制造工艺教研室机床夹具结构图册贵州任命出版社,1983:32504 刘友才机床夹具设计机械工业出版社,1992:27395 孟少龙机械加工工艺手册第1卷机械工业出版社,1991:3106 金属机械加工工艺人员手册修订组金属机械加工工艺人员手册上海科学技术出版社,1979:5257 李洪机械加工工艺手册机械工业出版社,1990:211248 马贤智机械加工余量与公差手册中国标准出版社,1994:34789 上海金属切削技术协会金属切削手册上海科学技术出版社,1984:72310 周永强高等学校毕业设计指导中国建材工业出版社,2002:4014311 薛源顺机床夹具设计(第二版) 机械工业出版社,2003:91712 余光国,马俊,张兴发等机床夹具设计重庆大学出版社,1995:54013 东北重型机械学院,洛阳农业机械学院,长春汽车厂工人大学机床夹具设计手册上海科学技术出版社,1980:324614 李庆寿机械制造工艺装备设计适用手册宁夏人民出版社,1991:294515 廖念钊,莫雨松,李硕根互换性与技术测量中国计量出版社,2000:91916 哈尔滨工业大学,哈尔滨市教育局专用机床夹具设计与制造黑农江人民出版社,1979:324217 乐兑谦金属切削刀具机械工业出版社,2005:41718 哈尔滨工业大学机床夹具设计手册上海科学技术出版社,1983:106919 ChernorMachine Tools N,1984:31820 John Louis FeirerMachine Tool MetalworkingGlencoe/McGraw-Hill School Pub Co,1973:153021 Manfred WeckHandbook of Machine Tools: Automation and controlsTranslated by H. BibringWiley Heyden publication,1984 :126622 Sors lfatigue design of machine componentsOxford:pergramon press,1971:155指导教师审查意见:指导教师签字: 20 年 月 日指导委员会意见审核意见:组长签字: 20 年 月 日 哈尔滨理工大学学士学位论文车床尾座体工艺规程制订及工装设计摘要尾座体是车床上的重要的部件之一,是车床上用以支撑轴类零件车削加工和实施钻孔的主要车床附件。本文针对某类给定的尾座体进行了加工工艺与工装的设计,完成了以下工作:1. 概述了尾座体的技术和现状发展;2. 对尾座体进行了工艺分析,并提出了两种方案进行比较;3. 编制了尾座体的工艺规程,完成了其工序卡的设计;4. 针对工艺中的某重要工序,设计完成了一套镗孔夹具,包括定位元件,夹紧机构、对刀块、夹具体的设计并分析了定位误差。关键词设计;工装;工艺;尾座体41Lather tail the craft work of the body pack a designAbstractstalk spare parts, the car pares to process the main lather enclosure that drills a hole with implementation.This text aims at a certain the tail body giving certainly carried on to process the design that craft and work pack and completed once work:1All said a tail the technique and present condition development of the body;2Carried on craft analysis to the tail body, and put forward two kinds of projects to carry on a comparison;3Drew up a tail body of craft regulations, completed the design of its work preface card;4Aim at a craft in of some important work preface, designed to complete a set of Xian slot tongs, including fixed position component, clipped tight organization, to the knife piece, clip a concrete design and analyzed a fixed position error margin.Keywordsdesign; clamping; craft; tailstock目录摘要IAbstractII第1章 绪论11.1 课题来源11.2 课题背景及发展趋势11.3 夹具的基本结构及夹具设计的内容11.4 本章小结2第2章 尾座体加工工艺规程设计32.1 零件的分析32.1.1 零件的作用32.1.2 零件的工艺分析32.2 加工的主要问题和工艺过程设计所应采取的相应措施42.2.1 确定毛坯的制造形式42.2.2 基面的选择42.2.3 确定工艺路线42.2.4 机械加工余量、工序尺寸及毛坯尺寸的确定52.2.5 确定主要工序工程中的切削用量72.3 本章小结17第3章 专用夹具设计183.1 镗75H6孔夹具设计183.1.1 定位基准的选择183.1.2 夹紧力的计算183.1.3 夹紧元件及动力装置确定193.1.4 镗套、镗模板及夹具体设计193.1.5 夹具精度及定位误差分析203.1.6 夹具设计及操作的简要说明203.2 本章小结22结论23致谢24参考文献25附录27第1章 绪论1.1 课题来源本课题来源于指导教师所给众多题目之一。1.2 课题背景及发展趋势加工工艺及夹具毕业设计是对所学专业知识的一次巩固,是在进行社会实践之前对所学各课程的一次深入的综合性的总复习,也是理论联系实际的训练。机床夹具已成为机械加工中的重要装备。机床夹具的设计和使用是促进生产发展的重要工艺措施之一。随着我国机械工业生产的不断发展,机床夹具的改进和创造已成为广大机械工人和技术人员在技术革新中的一项重要任务。材料、结构、工艺是产品设计的物质技术基础,一方面,技术制约着设计;另一方面,技术也推动着设计。从设计美学的观点看,技术不仅仅是物质基础还具有其本身的“功能”作用,只要善于应用材料的特性,予以相应的结构形式和适当的加工工艺,就能够创造出实用,美观,经济的产品,即在产品中发挥技术潜在的“功能”。技术是产品形态发展的先导,新材料,新工艺的出现,必然给产品带来新的结构,新的形态和新的造型风格。材料,加工工艺,结构,产品形象有机地联系在一起的,某个环节的变革,便会引起整个机体的变化。工业的迅速发展,对产品的品种和生产率提出了愈来愈高的要求,使多品种,对中小批生产作为机械生产的主流,为了适应机械生产的这种发展趋势,必然对机床夹具提出更高的要求。1.3 夹具的基本结构及夹具设计的内容根据夹具设计的基本原理,选择合理的夹紧与定位方案,最有效的满足镗床夹具的设计 要求当工件的加工精度要求较高时,应采用具有固定夹具的单工位组合机床;加工精度较低时,可采用具有移动夹具的多工位组合机床。此外,还要考虑到不同布置形式的机床所能达到的加工精度。例如,对于同轴度要求较高的各孔,应采用从同一面对工件进行加工的机床布置形式。按在夹具中的作用,地位结构特点,组成夹具的元件可以划分为以下几类:1定位元件及定位装置;2夹紧元件及定位装置(或者称夹紧机构);3夹具体;4对刀-引导元件及装置(包括刀具导向元件,对刀装置及靠模装置等);5动力装置;6分度,对定装置;7其它的元件及装置(包括夹具各部分相互连接用的以及夹具与机床相连接用的紧固螺钉,销钉,键和各种手柄等);每个夹具不一定所有的各类元件都具备,如手动夹具就没有动力装置,一般的车床夹具不一定有刀具导向元件及分度装置。反之,按照加工等方面的要求,有些夹具上还需要设有其它装置及机构,例如在有的自动化夹具中必须有上下料装置。专用夹具的设计主要是对以下几项内容进行设计:1定位装置的设计;2夹紧装置的设计;3对刀-引导装置的设计;4夹具体的设计;5其他元件及装置的设计。1.4 本章小结通过本章陈述了尾座体加工的发展趋势以及所研究课题的主要内容,使以后的设计有了明确的针对性。本论文以车床尾座为模板,根据零件的特性,通过分析计算,确定加工 基准。需在多种方案中选择最优的加工工艺路线,并根据计算所得的余量选择合理的机床进行加工。最后在所有的工序中选择一道工序,做镗床夹具设计。第2章 尾座体加工工艺规程设计2.1 零件的分析尾座体零件图如图2-1所示图2-1 尾座体2.1.1 零件的作用题目所给的零件是机床尾座体,75H6的孔与顶尖研配,底面与工作台相连,通过20mm孔用螺栓将“尾座体”紧固在工作台上。主要作用是固定顶尖。圆柱体形的部分有一个75H6孔,并且有一个25孔,顶尖穿过75H6孔,将螺钉拧紧,这样就将顶尖固定。2.1.2 零件的工艺分析“尾座体”共有三组加工表面,其中两组有位置度要求。1以A为基准的加工表面。这一组表面包括110x390的上平面,两侧表面,75mm孔,255的沉头孔,35H9孔以及42H7孔。2以B为基准的加工表面。这一组表面包括Ra=3.2m的前端面, Ra=1.6m的后端面,底平面60x20与32x3的槽,20H7和22的孔。3以C为基准的加工表面。这一组表面包括25H7孔。加工表面有位置度要求,如下: 底面平面度要求为0.04;75H6孔圆度公差为0.004,轴线与底面平行度为0.05;后端面与75H6轴线垂直度为0.04;25H7孔与42H7同轴度公差为0.02;底面60x20槽壁与孔75H6轴线垂直度要求0.1;75H6的孔需精加工、研配。2.2 加工的主要问题和工艺过程设计所应采取的相应措施2.2.1 确定毛坯的制造形式零件的材料HT200。由于尾座体年产量一般为几千件,达到大批生产的水平,而且零件的轮廓尺寸较大,铸造表面质量的要求高,故可采用铸造质量稳定的,适合大批生产的金属模铸造。便于铸造和加工工艺过程,而且还可以提高生产率。2.2.2 基面的选择1粗基准的选择 对于本零件而言,按照互为基准的选择原则,选择本零件的下表面作为加工的粗基准,可用装夹对肩台进行加紧,利用底面定位块支承和底面作为主要定位基准,以限制z、xz、y、xy、yz五个自由度达到定位目的。2精基准的选择 主要考虑到基准重合的问题,和便于装夹,采用已加工结束的上、下平面作为精基准。2.2.3 确定工艺路线表2.1工艺路线方案一工序1粗,精镗75H6孔工序2加工42H7孔,25H7孔工序3粗,精铣上平面、侧平面工序4粗,精铣底平面工序5加工上平面25H7孔工序6镗35H9侧面孔工序7加工底平面各孔,槽工序8去除锐边毛刺工序9检验表2.2工艺路线方案二工序1粗,精铣底平面工序2粗,精铣上平面、侧平面工序3粗,精镗75H6孔工序4加工42H7孔,25H7孔工序5镗35H9侧面孔工序6加工上平面25H7孔工序7加工底平面各孔,槽工序8去除锐边毛刺工序9检验工艺路线的比较与分析:第二条工艺路线不同于第一条是将“镗孔工序放在除前后端面外的各面加工结束后再进行加工。其它的先后顺序均没变化。通过分析发现这样的变动提高了生产效率。而且对于零的尺寸精度和位置精度都有太大程度的帮助,并且符合先面后孔的加工原则。采用基准重合的原则,先加工底平面,然后以底平面为精基准再加工其它平面上的各孔与平面,这样便保证了75H6和42H7孔的轴线,同时满足了以两轴轴线为基准加工的要求。符合先加工面再钻孔的原则。若选第一条工艺路线, 加工不便于装夹,并且毛坯的端面与轴的轴线是否垂直决定了钻出来的孔的轴线与轴的轴线是非平行这个问题。所以发现第一条工艺路线并不可行。选取第二条工艺方案,先镗上、下平面,各孔,然后以这些已加工的孔为精基准,加工其它各孔,槽的形位公差要求。从提高效率和保证精度这两个前提下,发现第二个方案比较合理。所以我决定以第二个方案进行生产。具体的工艺过程见工艺卡片所示。2.2.4 机械加工余量、工序尺寸及毛坯尺寸的确定尾座体的材料是HT200,生产类型为大批生产。由于毛坯采用金属模铸造, 毛坯尺寸的确定如下:由于毛坯及以后各道工序或工步的加工都有加工公差,因此所规定的加工余量其实只是名义上的加工余量,实际上加工余量有最大加工余量及最小加工余量之分。由于本设计规定零件为大批量生产,应该采用调整法加工,因此计算最大与最小余量时应按调整法加工方式予以确定。这里就不讲述如何铸造成毛坯的过程了,只分析从毛坯加工成成品零件的过程如下:1加工尾座体的底平面,底平面粗糙度要求为Ra=1.6m,平面度要求为0.04,根据参考文献8表4-35和表4-37考虑3mm,粗加工2mm,精加工1mm到金属模铸造的质量和表面的粗糙度要求。最后刮研底面,保证平面度0.04。加工上平面和侧面时,用铣削的方法加工上平面和两侧面。由于上平面和两侧面的加工表面粗糙度未标注,所以按照粗糙度要求为Ra=6.3m来加工,根据参考文献8表4-35和表4-37考虑2mm,粗铣加工2mm到金属模铸造的质量和表面的粗糙度要求。2加工前后端面时,用铣削加工方法加工。考虑到加工方便,按照粗糙度都是Ra=1.6m加工,根据参考文献8表4-35和表4-37考虑可用镗刀一次加工2mm到金属模铸造的质量和表面的粗糙度要求。因为后端面要求与基准B垂直度为0.04,所以等75H6孔加工之后,再刮研保证垂直度。3镗直径75H6孔时,由于粗糙度要求Ra=0.8m,因此考虑加工余量2.5mm。可一次粗加工2mm,一次精加工0.5mm就可达到要求。并且要保证从前端面开始的340mm锥度在0.04以内。4加工42H7孔,内壁粗糙度要求Ra=1.6m,根据参考文献8表4-23考虑加工余量2.5mm。可一次钻削加工余量2mm,一次精镗0.5mm就可达到要求。以42H7孔加工25H7孔同轴度0.02,余量与42H7孔相同。同时粗铣42H7孔两个端面和25H7孔的两个端面,保证各自长度值。5加工35H9孔,轴线距前端面为80mm,内壁粗糙度为Ra=3.2m,根据参考文献8表4-23考虑加工余量2mm。可一次粗镗1.5mm,一次精镗0.5mm就可达到要求。6加工上平面25H7孔,先加工25H7孔,内壁粗糙度要求Ra=1.6m,根据参考文献8表4-23考虑加工余量1.5mm。可一次钻削加工余量1mm,一次铰孔0.5mm就可达到要求。然后锪粗糙度为Ra=6.3m的45的沉孔。7加工底平面上的孔、槽,先分析孔的加工:20H7孔内壁粗糙度Ra=1.6m,根据参考文献8表4-23考虑加工余量1.5mm。可一次钻削加工余量1mm,一次铰孔0.5mm可达到要求。22孔及上面45沉头孔粗糙度为Ra=6.3m,一次粗加工即可完成,只需留1mm余量,需要考虑的是如何安排加工顺序,使用可调刀径的钻头,先钻削22的孔,然后将刀径调大回拉,锪钻出沉头孔,最后调小刀径退刀即可。然后分析槽的加工:宽度为60的槽,侧壁粗糙度要求为Ra=1.6m,且侧壁要求与基准B的垂直度为0.1,因此根据参考文献8表4-35和表4-37考虑3mm,粗铣2mm,然后精铣1mm,还要刮研以保证垂直度要求,最后清根。宽度为32mm,40mm及55mm的槽都没有精度要求,因此是铸造出来的孔,留2mm加工余量,只需要粗铣一下,保证其大致尺寸即可。2.2.5 确定主要工序工程中的切削用量工序1:粗、精铣尾座体底平面底平面粗糙度要求为Ra=1.6m,平面度要求为0.04,根据参考文献8表4-35和表4-37考虑3mm,粗加工2mm,精加工1mm到金属模铸造的质量和表面的粗糙度要求。下面就是铣底平面的具体余量及工时的计算加工底平面的过程图如图2-1图2-1 加工底平面过程图1. 粗铣底平面加工条件:工件材料: HT200,铸造。机床:X52K立式铣床。查参考文献7表3034刀具:硬质合金三面刃圆盘铣刀(面铣刀),材料:YT15,D=100mm ,齿数8,此为粗齿铣刀。因其单边余量:Z=2mm所以铣削深度ap:ap=2mm每齿进给量af:根据参考文献3表2.4-75,取af =0.12mm/Z,铣削速度V:参照参考文献7表3034,取V=1.33m/s。机床主轴转速n: 式(2.1)式中 V铣削速度; D刀具直径。由式2.1机床主轴转速n:按照参考文献3表3.1-74,得: n=300r/min实际铣削速度v:进给量Vf:工作台每分进给量fm:az:根据参考文献7表2.4-81,知az=40mm粗铣的切削工时被切削层长度l:由毛坯尺寸可知l=316mm刀具切入长度l1: 刀具切出长度l2:取l2=2mm走刀次数为1机动时间tj1:根据参考文献5表2.5-45,可查得铣削的辅助时间tf1=1.04min2. 精铣底平面加工条件:工件材料: HT200,铸造。机床: X52K立式铣床。参考文献7表30-31刀具:高速钢三面刃圆盘铣刀(面铣刀),材料:YT15,D=100mm ,齿数12,此为细齿铣刀。精铣该平面的单边余量:Z=1mm铣削深度ap:ap=1mm 每齿进给量af:根据参考文献7表3031,取af =0.08mm/Z铣削速度V:参照参考文献7表3031,取V=3.2m/s机床主轴转速n,由式(2.1)有:按照参考文献7表3.1-31,得n=800r/min实际铣削速度v:进给量Vf,由式(1.3)有:工作台每分进给量fm:精铣的切削工时被切削层长度l:由毛坯尺寸可知l=316mm刀具切入长度l1:精铣时l1=D=100mm刀具切出长度l2:取l2=1mm走刀次数为1机动时间tj2:根据参考文献5表2.5-45,可查得铣削的辅助时间tf2=1.04min铣底平面的总工时为:t= tj1+ tf1+ tj2+ tf2=1.13+1.04+0.29 +1.04=3.5min工序2:加工上平面、侧平面加工上平面和侧面时,用铣削的方法加工上平面和两侧面。由于上平面和两侧面的加工表面粗糙度未标注,所以按照粗糙度要求为Ra=6.3m来加工,根据参考文献8表4-35和表4-37考虑2mm,粗铣加工2mm到金属模铸造的质量和表面的粗糙度要求。各切削用量与粗加工底平面时相近,因此省略不算,参照工序1执行。加工上平面、侧平面过程如图2-2图2-2 加工上平面、侧平面过程图工序3:镗75H6的孔由于粗糙度要求Ra=0.8m,因此考虑加工余量2.5mm。可一次粗加工2mm,一次精加工0.5mm就可达到要求。并且要保证从前端面开始的340mm锥度在0.04以内。前后端面也同时加工出来,用铣削加工方法加工。考虑到加工方便,按照粗糙度都是Ra=1.6m加工,根据参考文献8表4-35和表4-37考虑可用镗刀一次加工2mm到金属模铸造的质量和表面的粗糙度要求。因为后端面要求与基准B垂直度为0.04,因此先加工前端面,然后镗75H6孔,最后加工后端面,这里只计算镗75H6的孔所需的加工余量及工时。加工过程如图2-3 图2-3 镗75H6的孔过程图1. 粗镗75H6的孔加工条件:工件材料: HT200,铸造。机床:卧式镗床T618刀具:硬质合金镗刀,镗刀材料:YT5切削深度ap:ap=2mm,毛坯孔径d0=70mm。进给量f:根据参考文献3表2.4-66,刀杆伸出长度取200mm,切削深度为ap=2mm。因此确定进给量f=0.2mm/r切削速度V:参照参考文献3表2.4-9,取V=2.4m/s=144m/min机床主轴转速n:按照参考文献3表3.1-41,取n=1000r/min实际切削速度v:工作台每分钟进给量fm:fm=f n=0.21000=200mm/min被切削层长度l:l=396mm刀具切入长度l1:刀具切出长度l2:l2=35mm 取l2=4mm行程次数i:i=1机动时间tj1:查参考文献1表2.5-37,工步辅助时间为:tf1=2.61min2. 精镗75H6的孔加工条件:工件材料: HT200,铸造。机床:卧式镗床T618刀具:硬质合金镗刀,镗刀材料:YT5切削深度ap:ap=0.5mm,孔径d=74mm。进给量f:根据参考文献3表2.4-66,刀杆伸出长度取200mm,切削深度为ap=0.5mm。因此确定进给量f=0.15mm/r切削速度V:参照参考文献3表2.4-9,取V=3.18m/s=190.8m/min机床主轴转速n:,取n=1000r/min实际切削速度v:工作台每分钟进给量fm:fm=f n=0.151000=150mm/min被切削层长度l:l=396mm刀具切入长度l1:刀具切出长度l2:l2=35mm 取l2=4mm行程次数i:i=1机动时间tj2:查参考文献1表2.5-37,工步辅助时间为:tf2=1.86min镗直径75总工时为:t= tj1+ tf1+ tj2+ tf2=2.03+2.61+2.69 +1.86=9.19min工序4:镗42H7和25H7的孔内壁粗糙度要求Ra=1.6m,根据参考文献8表4-23考虑加工余量2.5mm。可一次钻削加工余量2mm,一次精镗0.5mm就可达到要求。以42H7孔加工25H7孔同轴度0.02,余量与42H7孔相同,同时两个孔也是一次完成。加工过程如图2-4图2-4 镗42H7和25H7孔过程图1. 粗镗42H7的孔加工条件:工件材料: HT200,铸造。机床:卧式镗床T618刀具:硬质合金镗刀,镗刀材料:YT5切削深度ap:ap=2mm,毛坯孔径d0=37mm。进给量f:根据参考文献3表2.4-66,刀杆伸出长度取200mm,切削深度为ap=2mm。因此确定进给量f=0.2mm/r切削速度V:参照参考文献3表2.4-9,取V=1.92m/s=115m/min机床主轴转速n:按照参考文献3表3.1-41,取n=1000r/min实际切削速度v:工作台每分钟进给量fm:fm=f n=0.21000=200mm/min被切削层长度l:l=41mm刀具切入长度l1:刀具切出长度l2:l2=35mm 取l2=4mm行程次数i:i=1机动时间tj1:查参考文献1表2.5-37,工步辅助时间为:tf1=1.04min2. 精镗42H7的孔加工条件:工件材料: HT200,铸造。机床:卧式镗床T618刀具:硬质合金镗刀,镗刀材料:YT5切削深度ap:ap=0.5mm,孔径d=41mm。进给量f:根据参考文献3表2.4-66,刀杆伸出长度取200mm,切削深度为ap=0.5mm。因此确定进给量f=0.15mm/r切削速度V:参照参考文献3表2.4-9,取V=2.86m/s=171.72m/min机床主轴转速n:,取n=1500r/min实际切削速度v:工作台每分钟进给量fm:fm=f n=0.151500=225mm/min被切削层长度l:l=41mm刀具切入长度l1:刀具切出长度l2:l2=35mm 取l2=4mm行程次数i:i=1机动时间tj2:查参考文献1表2.5-37,工步辅助时间为:tf2=1.56min镗直径42总工时为:t= tj1+ tf1+ tj2+ tf2=0.25+1.04+0.32 +1.56=3.17min3. 粗镗25H7的孔加工条件:工件材料: HT200,铸造。机床:卧式镗床T618刀具:硬质合金镗刀,镗刀材料:YT5切削深度ap:ap=2mm,毛坯孔径d0=20mm。进给量f:根据参考文献3表2.4-66,刀杆伸出长度取200mm,切削深度为ap=2mm。因此确定进给量f=0.2mm/r切削速度V:参照参考文献3表2.4-9,取V=1.92m/s=115m/min机床主轴转速n:按照参考文献3表3.1-41,取n=1000r/min实际切削速度v:工作台每分钟进给量fm:fm=f n=0.21000=200mm/min被切削层长度l:l=24mm刀具切入长度l1:刀具切出长度l2:l2=35mm 取l2=4mm行程次数i:i=1机动时间tj1:查参考文献1表2.5-37,工步辅助时间为:tf1=1.04min4. 精镗25H7的孔加工条件:工件材料: HT200,铸造。机床:卧式镗床T618刀具:硬质合金镗刀,镗刀材料:YT5切削深度ap:ap=0.5mm,孔径d=24mm。进给量f:根据参考文献3表2.4-66,刀杆伸出长度取200mm,切削深度为ap=0.5mm。因此确定进给量f=0.15mm/r切削速度V:参照参考文献3表2.4-9,取V=2.86m/s=171.72m/min机床主轴转速n:,取n=1500r/min实际切削速度v:工作台每分钟进给量fm:fm=f n=0.151500=225mm/min被切削层长度l:l=24mm刀具切入长度l1:刀具切出长度l2:l2=35mm 取l2=4mm行程次数i:i=1机动时间tj2:查参考文献1表2.5-37,工步辅助时间为:tf2=1.04min镗直径42总工时为:t= tj1+ tf1+ tj2+ tf2=0.21+1.04+0.24+1.04=2.53min工序5:镗35H9的孔,轴线距前端面为80mm,内壁粗糙度为Ra=3.2m,根据参考文献8表4-23考虑加工余量2mm。可一次粗镗1.5mm,一次精镗0.5mm就可达到要求。加工过程如图2-5图2-5 镗35H9孔过程图1. 粗镗35H9的孔加工条件:工件材料: HT200,铸造。机床:卧式镗床T618刀具:硬质合金镗刀,镗刀材料:YT5切削深度ap:ap=2mm,毛坯孔径d0=30mm。进给量f:根据参考文献3表2.4-66,刀杆伸出长度取200mm,切削深度为ap=1.5mm。因此确定进给量f=0.2mm/r切削速度V:参照参考文献3表2.4-9,取V=1.92m/s=115m/min机床主轴转速n:按照参考文献3表3.1-41,取n=1000r/min实际切削速度v:工作台每分钟进给量fm:fm=f n=0.21000=200mm/min被切削层长度l:l=110mm刀具切入长度l1:刀具切出长度l2:l2=35mm 取l2=4mm行程次数i:i=1机动时间tj1:查参考文献1表2.5-37,工步辅助时间为:tf1=1.04min2. 精镗35H9的孔加工条件:工件材料: HT200,铸造。机床:卧式镗床T618刀具:硬质合金镗刀,镗刀材料:YT5切削深度ap:ap=0.5mm,孔径d=34mm。进给量f:根据参考文献3表2.4-66,刀杆伸出长度取200mm,切削深度为ap=0.5mm。因此确定进给量f=0.15mm/r切削速度V:参照参考文献3表2.4-9,取V=2.86m/s=171.72m/min机床主轴转速n:,取n=1500r/min实际切削速度v:工作台每分钟进给量fm:fm=f n=0.151500=225mm/min被切削层长度l:l=110mm刀具切入长度l1:刀具切出长度l2:l2=35mm 取l2=4mm行程次数i:i=1机动时间tj2:查参考文献1表2.5-37,工步辅助时间为:tf2=1.56min镗直径42总工时为:t= tj1+ tf1+ tj2+ tf2=0.23+1.04+0.29+1.56=3.12min所以该方案满足生产要求。2.3 本章小结机械加工工艺规程是规定产品或零部件机械加工工艺过程和操作方法等的工艺文件。对加工工艺规程的设计,可以了解了加工工艺对生产、工艺水平有着极其重要的影响。生产规模的大小、工艺水平的高低以及解决各种工艺问题的方法和手段都要通过机械加工工艺来体现。第3章 专用夹具设计为了提高劳动生产率,保证加工质量,降低劳动强度。在加工零件时,需要设计专用夹具。这里需要设计尾座体镗直径75H6孔夹具,镗孔的夹具将用于组合钻床,刀具镗刀。3.1 镗75H6孔夹具设计本夹具主要用来镗床上平夹具,此孔也是后面作为工艺孔使用,这个工艺孔有尺寸精度要求为H6,表面粗糙度为Ra=0.8m,与底平面平行度为0.05。并用于以后后端面和底平面的槽加工中的基准。其加工质量直接影响以后各工序的加工精度。加工到本道工序时只完成了尾座体上各表面的粗、精铣。因此在本道工序加工时主要应考虑如何保证其尺寸精度要求和表面粗糙度要求,以及如何提高劳动生产率,降低劳动强度。3.1.1 定位基准的选择由零件图可知,有尺寸精度要求和表面粗糙度要求并应与底平面有平行度要求。为了保证所镗的孔与底平面平行并保证工艺孔能在后续的孔系加工工序中使各重要支承孔的加工余量均匀。根据基准重合、基准统一原则。在选择工艺孔的加工定位基准时,应尽量选择上一道工序即粗、精铣尾座体的底平面工序的定位基准,以及设计基准作为其定位基准。因此加工工艺孔的定位基准应选择选用底平面作为定位基准,为了提高加工效率,根据工序要求先采用标准硬质合金镗刀刀具对工艺孔进行粗镗削加工;然后采用硬质合金镗刀对其进行精加工,所以可用支承板在底面定位,限制2个自由度,为增加定位的可靠性加上2个压板在顶面固定。准备采用手动压板夹紧方式夹紧。3.1.2 夹紧力的计算整于本道工序主要完成工艺孔的镗加工,参考文献9得:镗削力 镗削力矩 式中: D=74mm 本道工序加工工艺孔时,工件的底平面与工作台靠紧。采用带光面压块的压紧螺钉夹紧机构夹紧,该机构主要靠压紧螺钉夹紧,属于单个普通螺旋夹紧。根据参考文献11可查得夹紧力计算公式: (3.1)式中: W0单个螺旋夹紧产生的夹紧力(N); Q原始作用力(N); L作用力臂(mm); r螺杆端部与工件间的当量摩擦半径(mm); 螺杆端部与工件间的摩擦角(); 螺纹中径之半(mm); 螺纹升角(); 螺旋副的当量摩擦角()。由式(3.1)根据参考文献11表1-2-23可查得点接触的单个普通螺旋夹紧力:3.1.3 夹紧元件及动力装置确定由于尾座体的生产量很大,采用手动压板夹紧的夹具结构简单,在生产中的应用也比较广泛,本工序的夹紧力比较大,因此本道工序夹具的夹紧动力装置采用手动压板夹紧。采用手动压板夹紧,夹紧可靠,机构可以不必自锁。3.1.4 镗套、镗模板及夹具体设计工艺孔的加工需粗、精镗切削才能满足加工要求。故选用快换钻套(其结构如图3-1所示)以减少更换钻套的辅助时间。钻模板选用固定式钻模板,工件以底面及侧面分别靠在夹具支架的定位快,用带光面压块的压紧螺钉将工件夹紧。夹具体的设计主要考虑零件的形状及将上述各主要元件联成一个整体。这些主要元件设计好后即可画出夹具的设计装配草图。整个夹具的结构见夹具装配图如图3-1所示。3.1.5 夹具精度及定位误差分析利用夹具在机床上加工时,机床、夹具、工件、刀具等形成一个封闭的加工系统。它们之间相互联系,最后形成工件和刀具之间的正确位置关系。因此在夹具设计中,当结构方案确定后,应对所设计的夹具进行精度分析和误差计算。由工序简图可知,本道工序由于工序基准与加工基准重合,又采用底平面为主要定位基面,故定位误差很小可以忽略不计。本道工序加工中主要保证工艺孔尺寸75H6及表面粗糙度Ra=0.8m。本道工序最后采用精镗加工,选用标准硬质合金镗刀,直径为75H6,并采用镗套,镗刀导套孔径为该工艺孔的位置度应用的是最大实体要求。工艺孔的表面粗糙度Ra=0.8m,由本工序所选用的加工工步粗、镗精满足。影响两工艺孔位置度的因素有:1镗模板上装衬套孔的尺寸公差:2两衬套的同轴度公差:3衬套与钻套配合的最大间隙:4钻套的同轴度公差:5镗套与镗刀配合的最大间隙:所以能满足加工要求。3.1.6 夹具设计及操作的简要说明夹具设计应首先着眼于手动夹紧而不是机动夹紧,因为压板夹紧结构简单,容易制造,这是提高劳动生产率主要途径。夹具上 装有定位块,以利于工件很好的定位。本着这种思想设计了镗75H6孔的夹具(如图3-1所示)。操作比较简单,装卸工件时,先将工件放在定位块上;用压块的压紧螺钉将工件夹紧;然后加工工件。当工件加工完后,将压板的压紧螺钉松开,取出工件。图3-1 夹具的结构见夹具装配3.2 本章小结如前所说,在设计夹具时,应提高劳动生产率。切削力较大,为了夹紧工件,要求夹具的精度高,而这样的话将使整个夹具过于麻烦, 因此,应首先设法降低切削力,措施有二:一是提高毛坯的制造精度,使最大切削深度降低,以降低最大切削力;二是选择一种比较理想的压板压紧机构,由于自锁性比较好,故容易夹紧。因此,本夹具总的感觉还比较紧凑。对专用夹具的设计,可以了解机床夹具在切削加工中的作用,可靠地保证工件的加工精度,提高加工效率,减轻劳动强度,充分发挥和扩大机床的给以性能。本夹具设计可以反应夹具设计时应注意的问题,如定位精度、夹紧方式、夹具结构的刚度和强度、结构工艺性等问题。结论目前车床尾座的生产周期相对较长,车床尾座采用铸造,不能达到其使用要求,必须经过许多步的在加工,才能满足其使用要求,在其加工过程中采用许多道工序。该课题就是为了优化加工工艺,提高加工生产效率,降低生产成本。该课题将在不降低车床尾座的使用性能的前提下采用机械加工的优化设计来达到预期目。其中本人对于对生产加工中的各个工序所需用时进行了计算,主要通过工厂请教加工工人,利用其丰富的加工经验从而使本课题更具实际的可运行性,并寻求指导老师的帮助,使得本次设计可以投入到实际的生产加工当中。本文对车床的机械结构进行了分析和说明,具体包含进给机构和主轴系统等核心部分的介绍。在对车床尾座的分析设计中,文章针对尾座体进行了结构设计,并进行了工艺规程文件的编制。对以后车床尾座设计计算方面的工作提供了参考,具有一定的实用价值。在整个设计过程中,我本着实事求是的原则,抱着科学、严谨的态度,主要按照课本的步骤,到图书馆查阅资料,在网上搜索一些相关的资料和相关产品信息,进工厂请教工人师傅,在学校征求指导老师的建议,最终完成了此次毕业设计。致谢为期四个月的本科毕业设计已接近尾声,对于这一次的毕业设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有指导老师的督促指导,以及一起工作的工厂师傅们的支持,想要完成这个设计是难以想象的。在张宝海老师的悉心指导下,我掌握了设计的方法,从接触课题,到熟悉课题,最后完成总体设计等一系列过程,学会了解决问题的方法,对四年所学的知识得到更好的巩固。本文的选题、课题研究及撰写工作是在指导老师张宝海老师的关怀和悉心指导下完成的。张老师严谨治学的态度和踏实求新的学术精神深深的感染了我,在此对老师致以崇高的敬意和忠心的感谢!此次的毕业设计使我对所学的知识有了进一步的认识,锻炼了自己独立分析问题和解决问题的能力。同时,也暴露了自己的很多不足之处,在设计进行和论文撰写工作中,工厂的张万军老师帮助我分析工装和王峰老师帮助我理清工艺工程,他们都给了我特别大的帮助,虽然他们自己的工作繁忙但依然抽出大量的时间为我解决很多具体问题,在整个方案的选择、工艺路线的制定以及调试修改过程中做了大量的工作,使我能够在较短的时间内更好的掌握工装设计。在此对他们表示诚挚的谢意!此外,还要对与我一起做毕业设计的同学们和在毕业设计过程中在生活上和在学习上帮助过我的人表示衷心的感谢。参考文献1 刘德荣组合夹具结构简图的初步探讨,组合夹具,1982,15322 孙已德机床夹具图册机械工业出版社,1984:20233 贵州工学院机械制造工艺教研室机床夹具结构图册贵州任命出版社,1983:32504 刘友才机床夹具设计机械工业出版社,1992:27395 孟少龙机械加工工艺手册第1卷机械工业出版社,1991:3106 金属机械加工工艺人员手册修订组金属机械加工工艺人员手册上海科学技术出版社,1979:5257 李洪机械加工工艺手册机械工业出版社,1990:211248 马贤智机械加工余量与公差手册中国标准出版社,1994:34789 上海金属切削技术协会金属切削手册上海科学技术出版社,1984:72310 周永强高等学校毕业设计指导中国建材工业出版社,2002:4014311 薛源顺机床夹具设计(第二版) 机械工业出版社,2003:91712 余光国,马俊,张兴发等机床夹具设计重庆大学出版社,1995:54013 东北重型机械学院,洛阳农业机械学院,长春汽车厂工人大学机床夹具设计手册上海科学技术出版社,1980:324614 李庆寿机械制造工艺装备设计适用手册宁夏人民出版社,1991:294515 廖念钊,莫雨松,李硕根互换性与技术测量中国计量出版社,2000:91916 哈尔滨工业大学,哈尔滨市教育局专用机床夹具设计与制造黑农江人民出版社,1979:324217 乐兑谦金属切削刀具机械工业出版社,2005:41718 哈尔滨工业大学机床夹具设计手册上海科学技术出版社,1983:106919 ChernorMachine Tools N,1984:31820 John Louis FeirerMachine Tool MetalworkingGlencoe/McGraw-Hill School Pub Co,1973:153021 Manfred WeckHandbook of Machine Tools: Automation and controlsTranslated by H. BibringWiley Heyden publication,1984 :126622 Sors lfatigue design of machine componentsOxford:pergramon press,1971:155附录Basic Machining Operations and Cutting TechnologyMachine tools have evolved from the early foot-powered lathes of the Egyptians and John Wilkinsons boring mill. They are designed to provide rigid support for both the workpiece and the cutting tool and can precisely control their relative positions and the velocity of the tool with respect to the workpiece. Basically, in metal cutting, a sharpened wedge-shaped tool removes a rather narrow strip of metal from the surface of a ductile workpiece in the form of a severely deformed chip. The chip is a waste product that is considerably shorter than the workpiece from which it came but with a corresponding increase in thickness of the uncut chip. The geometrical shape of workpiece depends on the shape of the tool and its path during the machining operation. Most machining operations produce parts of differing geometry. If a rough cylindrical workpiece revolves about a central axis and the tool penetrates beneath its surface and travels parallel to the center of rotation, a surface of revolution is produced, and the operation is called turning. If a hollow tube is machined on the inside in a similar manner, the operation is called boring. Producing an external conical surface uniformly varying diameter is called taper turning, if the tool point travels in a path of varying radius, a contoured surface like that of a bowling pin can be produced; or, if the piece is short enough and the support is sufficiently rigid, a contoured surface could be produced by feeding a shaped tool normal to the axis of rotation. Short tapered or cylindrical surfaces could also be contour formed. Flat or plane surfaces are frequently required. They can be generated by radial turning or facing, in which the tool point moves normal to the axis of rotation. In other cases, it is more convenient to hold the workpiece steady and reciprocate the tool across it in a series of straight-line cuts with a crosswise feed increment before each cutting stroke. This operation is called planning and is carried out on a shaper. For larger pieces it is easier to keep the tool stationary and draw the workpiece under it as in planning. The tool is fed at each reciprocation. Contoured surfaces can be produced by using shaped tools. Multiple-edged tools can also be used. Drilling uses a twin-edged fluted tool for holes with depths up to 5 to 10 times the drill diameter. Whether the drill turns or the workpiece rotates, relative motion between the cutting edge and the workpiece is the important factor. In milling operations a rotary cutter with a number of cutting edges engages the workpiece. Which moves slowly with respect to the cutter. Plane or contoured surfaces may be produced, depending on the geometry of the cutter and the type of feed. Horizontal or vertical axes of rotation may be used, and the feed of the workpiece may be in any of the three coordinate directions. Basic Machine Tools Machine tools are used to produce a part of a specified geometrical shape and precise I size by removing metal from a ductile material in the form of chips. The latter are a waste product and vary from long continuous ribbons of a ductile material such as steel, which are undesirable from a disposal point of view, to easily handled well-broken chips resulting from cast iron. Machine tools perform five basic metal-removal processes: I turning, planning, drilling, milling, and grinding. All other metal-removal processes are modifications of these five basic processes. For example, boring is internal turning; reaming, tapping, and counter boring modify drilled holes and are related to drilling; bobbing and gear cutting are fundamentally milling operations; hack sawing and broaching are a form of planning and honing; lapping, super finishing. Polishing and buffing are variants of grinding or abrasive removal operations. Therefore, there are only four types of basic machine tools, which use cutting tools of specific controllable geometry: 1. lathes, 2. planers, 3. drilling machines, and 4. milling machines. The grinding process forms chips, but the geometry of the abrasive grain is uncontrollable. The amount and rate of material removed by the various machining processes may be I large, as in heavy turning operations, or extremely small, as in lapping or super finishing operations where only the high spots of a surface are removed. A machine tool performs three major functions: 1. it rigidly supports the workpiece or its holder and the cutting tool; 2. it provides relative motion between the workpiece and the cutting tool; 3. it provides a range of feeds and speeds usually ranging from 4 to 32 choices in each case. Introduction of MachiningMachining as a shape-producing method is the most universally used and the most important of all manufacturing processes. Machining is a shape-producing process in which a power-driven device causes material to be removed in chip form. Most machining is done with equipment that supports both the work piece and cutting tool although in some cases portable equipment is used with unsupported workpiece. Low setup cost for small Quantities. Machining has two applications in manufacturing. For casting, forging, and press working, each specific shape to be produced, even one part, nearly always has a high tooling cost. The shapes that may he produced by welding depend to a large degree on the shapes of raw material that are available. By making use of generally high cost equipment but without special tooling, it is possible, by machining; to start with nearly any form of raw material, so tong as the exterior dimensions are great enough, and produce any desired shape from any material. Therefore .machining is usually the preferred method for producing one or a few parts, even when the design of the part would logically lead to casting, forging or press working if a high quantity were to be produced. Close accuracies, good finishes. The second application for machining is based on the high accuracies and surface finishes possible. Many of the parts machined in low quantities would be produced with lower but acceptable tolerances if produced in high quantities by some other process. On the other hand, many parts are given their general shapes by some high quantity deformation process and machined only on selected surfaces where high accuracies are needed. Internal threads, for example, are seldom produced by any means other than machining and small holes in press worked parts may be machined following the press working operations. Primary Cutting Parameters The basic tool-work relationship in cutting is adequately described by means of four factors: tool geometry, cutting speed, feed, and depth of cut. The cutting tool must be made of an appropriate material; it must be strong, tough, hard, and wear resistant. The tool s geometry characterized by planes and angles, must be correct for each cutting operation. Cutting speed is the rate at which the work surface passes by the cutting edge. It may be expressed in feet per minute. For efficient machining the cutting speed must be of a magnitude appropriate to the particular work-tool combination. In general, the harder the work material, the slower the speed. Feed is the rate at which the cutting tool advances into the workpiece. Where the workpiece or the tool rotates, feed is measured in inches per revolution. When the tool or the work reciprocates, feed is measured in inches per stroke, Generally, feed varies inversely with cutting speed for otherwise similar conditions. The depth of cut, measured inches is the distance the tool is set into the work. It is the width of the chip in turning or the thickness of the chip in a rectilinear cut. In roughing operations, the depth of cut can be larger than for finishing operations. The Effect of Changes in Cutting Parameters on Cutting Temperatures In metal cutting operations heat is generated in the primary and secondary deformation zones and these results in a complex temperature distribution throughout the tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to the face as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance into the chip. Since virtually all the work done in metal cutting is converted into heat, it could be expected that factors which increase the power consumed per unit volume of metal removed will increase the cutting temperature. Thus an increase in the rake angle, all other parameters remaining constant, will reduce the power per unit volume of metal removed and the cutting temperatures will reduce. When considering increase in unreformed chip thickness and cutting speed the situation is more complex. An increase in undeformed chip thickness tends to be a scale effect where the amounts of heat which pass to the workpiece, the tool and chip remain in fixed proportions and the changes in cutting temperature tend to be small. Increase in cutting speed; however, reduce the amount of heat which passes into the workpiece and this increase the temperature rise of the chip m primary deformation. Further, the secondary deformation zone tends to be smaller and this has the effect of increasing the temperatures in this zone. Other changes in cutting parameters have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the cutting temperatures. Since it has been shown that even small changes in cutting temperature have a significant effect on tool wear rate it is appropriate to indicate how cutting temperatures can be assessed from cutting data. The most direct and accurate method for measuring temperatures in high -speed-steel cutting tools is that of Wright &. Trent which also yields detailed information on temperature distributions in high-speed-steel cutting tools. The technique is based on the metallographic examination of sectioned high-speed-steel tools which relates microstructure changes to thermal history. Trent has described measurements of cutting temperatures and temperature distributions for high-speed-steel tools when machining a wide range of workpiece materials. This technique has been further developed by using scanning electron microscopy to study fine-scale microstructure changes arising from over tempering of the tempered martens tic matrix of various high-speed-steels. This technique has also been used to study temperature distributions in both high-speed -steel single point turning tools and twist drills. Wears of Cutting Tool Discounting brittle fracture and edge chipping, which have already been dealt with, tool wear is basically of three types. Flank wear, crater wear, and notch wear. Flank wear occurs on both the major and the minor cutting edges. On the major cutting edge, which is responsible for bulk metal removal, these results in increased cutting forces and higher temperatures which if left unchecked can lead to vibration of the tool and workpiece and a condition where efficient cutting can no longer take place. On the minor cutting edge, which determines workpiece size and surface finish, flank wear can result in an oversized product which has poor surface finish. Under most practical cutting conditions, the tool will fail due to major flank wear before the minor flank wear is sufficiently large to result in the manufacture of an unacceptable component. Because of the stress distribution on the tool face, the frictional stress in the region of sliding contact between the chip and the face is at a maximum at the start of the sliding contact region and is zero at the end. Thus abrasive wear takes place in this region with more wear taking place adjacent to the seizure region than adjacent to the point at which the chip loses contact with the face. This result in localized pitting of the tool face some distance up the face which is usually referred to as catering and which normally has a section in the form of a circular arc. In many respects and for practical cutting conditions, crater wear is a less severe form of wear than flank wear and consequently flank wear is a more common tool failure criterion. However, since various authors have shown that the temperature on the face increases more rapidly with increasing cutting speed than the temperature on the flank, and since the rate of wear of any type is significantly affected by changes in temperature, crater wear usually occurs at high cutting speeds. At the end of the major flank wear land where the tool is in contact with the uncut workpiece surface it is common for the flank wear to be more pronounced than along the rest of the wear land. This is because of localised effects such as a hardened layer on the uncut surface caused by work hardening introduced by a previous cut, an oxide scale, and localised high temperatures resulting from the edge effect. This localised wear is usually referred to as notch wear and occasionally is very severe. Although the presence of the notch will not significantly affect the cutting properties of the tool, the notch is often relatively deep and if cutting were to continue there would be a good chance that the tool would fracture. If any form of progressive wear allowed to continue, dramatically and the tool would fail catastrophically, i. e. the tool would be no longer capable of cutting and, at best, the workpiece would be scrapped whilst, at worst, damage could be caused to the machine tool. For carbide cutting tools and for all types of wear, the tool is said to have reached the end of its useful life long before the onset of catastrophic failure. For high-speed-steel cutting tools, however, where the wear tends to be non-uniform it has been found that the most meaningful and reproducible results can be obtained when the wear is allowed to continue to the onset of catastrophic failure even though, of course, in practice a cutting time far less than that to failure would be used. The onset of catastrophic failure is characterized by one of several phenomena, the most common being a sudden increase in cutting force, the presence of burnished rings on the workpiece, and a significant increase in the noise level. Mechanism of Surface Finish Production There are basically five mechanisms which contribute to the production of a surface which have been machined. These are:1The basic geometry of the cutting process. In, for example, single point turning the tool will advance a constant distance axially per revolution of the workpiecc and the resultant surface will have on it, when viewed perpendicularly to the direction of tool feed motion, a series of cusps which will have a basic form which replicates the shape of the tool in cut. 2The efficiency of the cutting operation. It has already been mentioned that cutting with unstable built-up-edges will produce a surface which contains hard built-up-edge fragments which will result in a degradation of the surface finish. It can also be demonstrated that cutting under adverse conditions such as apply when using large feeds small rake angles and low cutting speeds, besides producing conditions which lead to unstable built-up-edge production, the cutting process itself can become unstable and instead of continuous shear occurring in the shear zone, tearing takes place, discontinuous chips of uneven thickness are produced, and the resultant surface is poor. This situation is particularly noticeable when machining very ductile materials such as copper and aluminum. 3The stability of the machine tool. Under some combinations of cutting conditions; workpiece size, method of clamping ,and cutting tool rigidity relative to the machine tool structure, instability can be set up in the tool which causes it to vibrate. Under some conditions this vibration will reach and maintain steady amplitude whilst under other conditions the vibration will built up and unless cutting is stopped considerable damage to both the cutting tool and workpiece may occur. This phenomenon is known as chatter and in axial turning is characterized by long pitch helical bands on the workpiece surface and short pitch undulations on the transient machined surface. 4The effectiveness of removing swarf. In discontinuous chip production machining, such as milling or turning of brittle materials, it is expected that the chip (swarf) will leave the cutting zone either under gravity or with the assistance of a jet of cutting fluid and that they will not influence the cut surface in any way. However, when continuous chip production is evident, unless steps are taken to control the swarf it is likely that it will impinge on the cut surface and mark it. Inevitably, this marking besides looking. 5The effective clearance angle on the cutting tool. For certain geometries of minor cutting edge relief and clearance angles it is possible to cut on the major cutting edge and burnish on the minor cutting edge. This can produce a good surface finish but, of course, it is strictly a combination of metal cutting and metal forming and is not to be recommended as a practical cutting method. However, due to cutting tool wear, these conditions occasionally arise and lead to a marked change in the surface characteristics. Limits and Tolerances Machine parts are manufactured so they are interchangeable. In other words, each part of a machine or mechanism is made to a certain size and shape so will fit into any other machine or mechanism of the same type. To make the part interchangeable, each individual part must be made to a size that will fit the mating part in the correct way. It is not only impossible, but also impractical to make many parts to an exact size. This is because machines are not perfect, and the tools become worn. A slight variation from the exact size is always allowed. The amount of this variation depends on the kind of part being manufactured. For examples part might be made 6 in. long with a variation allowed of 0.003 (three-thousandths) in. above and below this size. Therefore, the part could be 5.997 to 6.003 in. and still be the correct size. These are known as the limits. The difference between upper and lower limits is called the tolerance. A tolerance is the total permissible variation in the size of a part. The basic size is that size from which limits of size arc derived by the application of allowances and tolerances. Sometimes the limit is allowed in only one direction. This is known as unilateral tolerance.Unilateral tolerancing is a system of dimensioning where the tolerance (that is variation) is shown in only one direction from the nominal size. Unilateral tolerancing allow the changing of tolerance on a hole or shaft without seriously affecting the fit.When the tolerance is in both directions from the basic size it is known as a bilateral tolerance (plus and minus). Bilateral tolerancing is a system of dimensioning where the tolerance (that is variation) is split and is shown on either side of the nominal size. Limit dimensioning is a system of dimensioning where only the maximum and minimum dimensions arc shown. Thus, the tolerance is the difference between these two dimensions. 基本加工工序和切削技术机床是从早期的埃及人的脚踏动力车和约翰威尔金森的镗床发展而来的。
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:车床尾座体工艺规程制订及工装夹具设计【3张CAD图纸+毕业论文】【答辩通过】
链接地址:https://www.renrendoc.com/p-445127.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!