



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省赣榆县智贤中学2014高中数学 1.2 余弦定理(1)教案 苏教版必修5学习目标1. 掌握余弦定理及其证明方法;2. 初步掌握余弦定理的应用;3. 培养学生推理探索数学规律和归纳总结的思维能力重点余弦定理及其应用难点用解析法证明余弦定理教学方法发现教学法教学课时2教具教学流程活动记录复备栏一、问题情境在上节中,我们通过等式的两边与(为中边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理探索1还有其他途径将向量等式数量化吗?abc二、学生活动向量的平方是向量数量化的一种手段因为(如图1),所以图1 即 ,同理可得 ,上述等式表明,三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍引出课题余弦定理探索2:回顾正弦定理的证明,尝试用其他方法证明余弦定理ac图2byx师生共同活动,探索证明过程经过讨论,可归纳出如下方法方法一:如图2建立直角坐标系,则所以 同理可证:,方法二:若是锐角,如图3,由作,垂足为,则bcad图3 ,类似地,可以证明当是钝角时,结论也成立,而当是直角时,结论显然成立同理可证 ,方法三:由正弦定理,得所以 同理可证 ,余弦定理也可以写成如下形式:,探索3 利用余弦定理可以解决斜三角形中的哪些类型问题?利用余弦定理,可以解决以下两类解斜三角形的问题:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角四、数学运用1例题例1在中,(1)已知,求;(2)已知求最大角的余弦值解(1)由余弦定理,得,所以 (2)因为,所以为最大角,由余弦定理,得例2用余弦定理证明:在中,当为锐角时,;当为钝角时,证明:当为锐角时,由余弦定理得即;同理可证,当为钝角时,2练习(1)在中,已知,求(2)若三条线段的长分别为5,6,7,则用这三条线段( ) a. 能组成直角三角形 b. 能组成锐角三角形c. 能组成钝角三角形 d. 不能组成三角形(3)在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隐藏晾衣架施工方案
- 排水系统建设与灾后恢复方案
- 涵洞清淤应急预案
- 4.学习的发动机说课稿-2025-2026学年小学心理健康鲁画版五年级上册-鲁画版
- xx镇雨污分流改造完善工程施工方案
- 表面处理技术合同
- Unit 1 Section B (2a-self check) 教学设计人教版英语八年级下册
- 18. The Caterpillar教学设计-2025-2026学年小学英语1b典范英语(Good English)
- 城市园林绿化提升合同
- 远程医疗如何推动2025年偏远地区医疗服务的远程医疗市场细分市场前景展望报告
- 2025版简易劳务合同模板
- 2025年浙江省单独考试招生语文试卷试题真题(含答案详解)
- 消防水池挖槽施工方案
- 高一地理第一次月考卷02【测试范围:必修一第1~2章】(考试版)
- 水电站设备维护检修课件
- 2025年沼液还田协议书
- 2025年浙商银行招聘考试(综合知识)历年参考题库含答案详解(5卷)
- APQP第三版及CP第一版介绍
- 治安管理处罚法普法讲座
- 六堡茶知识讲座
- 中南财经政法大学哲学院《615社会学原理》历年考研真题汇编(含部分答案)
评论
0/150
提交评论