云南省德宏州芒市第一中学高中数学 2.2椭圆教学设计 新人教A版选修21.doc_第1页
云南省德宏州芒市第一中学高中数学 2.2椭圆教学设计 新人教A版选修21.doc_第2页
云南省德宏州芒市第一中学高中数学 2.2椭圆教学设计 新人教A版选修21.doc_第3页
云南省德宏州芒市第一中学高中数学 2.2椭圆教学设计 新人教A版选修21.doc_第4页
云南省德宏州芒市第一中学高中数学 2.2椭圆教学设计 新人教A版选修21.doc_第5页
免费预览已结束,剩余11页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2 椭 圆2.2.1椭圆及其标准方程 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法 过程与方法目标(1)预习与引入过程当变化的平面与圆锥轴所成的角在变化时,观察平面截圆锥的截口曲线(截面与圆锥侧面的交线)是什么图形?又是怎么样变化的?特别是当截面不与圆锥的轴线或圆锥的母线平行时,截口曲线是椭圆,再观察或操作了课件后,提出两个问题:第一、你能理解为什么把圆、椭圆、双曲线和抛物线叫做圆锥曲线;第二、你能举出现实生活中圆锥曲线的例子当学生把上述两个问题回答清楚后,要引导学生一起探究p41页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm长,两端各结一个套),教师准备无弹性细绳子一条(约60cm,一端结个套,另一端是活动的),图钉两个)当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆启发性提问:在这一过程中,你能说出移动的笔小(动点)满足的几何条件是什么?板书211椭圆及其标准方程(2)新课讲授过程(i)由上述探究过程容易得到椭圆的定义板书把平面内与两个定点,的距离之和等于常数(大于)的点的轨迹叫做椭圆(ellipse)其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距即当动点设为时,椭圆即为点集(ii)椭圆标准方程的推导过程提问:已知图形,建立直角坐标系的一般性要求是什么?第一、充分利用图形的对称性;第二、注意图形的特殊性和一般性关系 无理方程的化简过程是教学的难点,注意无理方程的两次移项、平方整理 设参量的意义:第一、便于写出椭圆的标准方程;第二、的关系有明显的几何意义 类比:写出焦点在轴上,中心在原点的椭圆的标准方程(iii)例题讲解与引申例1 已知椭圆两个焦点的坐标分别是,并且经过点,求它的标准方程分析:由椭圆的标准方程的定义及给出的条件,容易求出引导学生用其他方法来解另解:设椭圆的标准方程为,因点在椭圆上,则例2 如图,在圆上任取一点,过点作轴的垂线段,为垂足当点在圆上运动时,线段的中点的轨迹是什么?分析:点在圆上运动,由点移动引起点的运动,则称点是点的伴随点,因点为线段的中点,则点的坐标可由点来表示,从而能求点的轨迹方程引申:设定点,是椭圆上动点,求线段中点的轨迹方程解法剖析:(代入法求伴随轨迹)设,;(点与伴随点的关系)为线段的中点,;(代入已知轨迹求出伴随轨迹),点的轨迹方程为;伴随轨迹表示的范围例3如图,设,的坐标分别为,直线,相交于点,且它们的斜率之积为,求点的轨迹方程分析:若设点,则直线,的斜率就可以用含的式子表示,由于直线,的斜率之积是,因此,可以求出之间的关系式,即得到点的轨迹方程解法剖析:设点,则,;代入点的集合有,化简即可得点的轨迹方程引申:如图,设的两个顶点,顶点在移动,且,且,试求动点的轨迹方程引申目的有两点:让学生明白题目涉及问题的一般情形;当值在变化时,线段的角色也是从椭圆的长轴圆的直径椭圆的短轴 情感、态度与价值观目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;必须让学生认同与体会:椭圆的定义及特殊情形当常数等于两定点间距离时,轨迹是线段;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,及引入参量的意义,培养学生用对称的美学思维来体现数学的和谐美;让学生认同与领悟:例1使用定义解题是首选的,但也可以用其他方法来解,培养学生从定义的角度思考问题的好习惯;例2是典型的用代入法求动点的伴随点的轨迹,培养学生的辩证思维方法,会用分析、联系的观点解决问题;通过例3培养学生的对问题引申、分段讨论的思维品质能力目标(1) 想象与归纳能力:能根据课程的内容能想象日常生活中哪些是椭圆、双曲线和抛物线的实际例子,能用数学符号或自然语言的描述椭圆的定义,能正确且直观地绘作图形,反过来根据图形能用数学术语和数学符号表示(2) 思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力(4) 数学活动能力:培养学生观察、实验、探究、验证与交流等数学活动能力(5) 创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径练习:第45页1、2、3、4、作业:第53页2、3、212椭圆的简单几何性质 知识与技能目标了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义 过程与方法目标(1)复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养由椭圆的标准方程和非负实数的概念能得到椭圆的范围;由方程的性质得到椭圆的对称性;先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;通过p48的思考问题,探究椭圆的扁平程度量椭圆的离心率板书212椭圆的简单几何性质(2)新课讲授过程(i)通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质 (ii)椭圆的简单几何性质 范围:由椭圆的标准方程可得,进一步得:,同理可得:,即椭圆位于直线和所围成的矩形框图里;对称性:由以代,以代和代,且以代这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以轴和轴为对称轴,原点为对称中心;顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;离心率: 椭圆的焦距与长轴长的比叫做椭圆的离心率(),; (iii)例题讲解与引申、扩展例4 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标分析:由椭圆的方程化为标准方程,容易求出引导学生用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量扩展:已知椭圆的离心率为,求的值解法剖析:依题意,但椭圆的焦点位置没有确定,应分类讨论:当焦点在轴上,即时,有,得;当焦点在轴上,即时,有,例5 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分过对对称的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点已知,建立适当的坐标系,求截口所在椭圆的方程解法剖析:建立适当的直角坐标系,设椭圆的标准方程为,算出的值;此题应注意两点:注意建立直角坐标系的两个原则;关于的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定引申:如图所示, “神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心为一个焦点的椭圆,近地点距地面,远地点距地面,已知地球的半径建立适当的直角坐标系,求出椭圆的轨迹方程例6如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程分析:若设点,则,到直线:的距离,则容易得点的轨迹方程引申:(用几何画板探究)若点与定点的距离和它到定直线:的距离比是常数,则点的轨迹方程是椭圆其中定点是焦点,定直线:相应于的准线;由椭圆的对称性,另一焦点,相应于的准线: 情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新必须让学生认同和掌握:椭圆的简单几何性质,能由椭圆的标准方程能直接得到椭圆的范围、对称性、顶点和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,充分利用图形对称性,注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:实际问题可以近似计算,也可以不近似计算,要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能 能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力(2) 思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力(4) 创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径练习:第52页1、2、3、4、5、6、7作业:第53页4、5补充: 1.课题:双曲线第二定义学法指导:以问题为诱导,结合图形,引导学生进行必要的联想、类比、化归、转化.复习回顾问题推广引出课题典型例题课堂练习归纳小结教学目标知识目标:椭圆第二定义、准线方程;能力目标:1使学生了解椭圆第二定义给出的背景; 2了解离心率的几何意义; 3使学生理解椭圆第二定义、椭圆的准线定义; 4使学生掌握椭圆的准线方程以及准线方程的应用; 5使学生掌握椭圆第二定义的简单应用;情感与态度目标:通过问题的引入和变式,激发学生学习的兴趣,应用运动变化的观点看待问题,体现数学的美学价值.教学重点:椭圆第二定义、焦半径公式、准线方程;教学难点:椭圆的第二定义的运用;教具准备:与教材内容相关的资料。教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神教学过程: 学生探究过程:复习回顾1椭圆的长轴长为 18 ,短轴长为 6 ,半焦距为,离心率为,焦点坐标为,顶点坐标为,(准线方程为).2短轴长为8,离心率为的椭圆两焦点分别为、,过点作直线交椭圆于a、b两点,则的周长为 20 .引入课题【习题4(教材p50例6)】椭圆的方程为,m1,m2为椭圆上的点 求点m1(4,2.4)到焦点f(3,0)的距离 2.6 . 若点m2为(4,y0)不求出点m2的纵坐标,你能求出这点到焦点f(3,0)的距离吗?解:且代入消去得【推广】你能否将椭圆上任一点到焦点的距离表示成点m横坐标的函数吗?解:代入消去 得问题1:你能将所得函数关系叙述成命题吗?(用文字语言表述)椭圆上的点m到右焦点的距离与它到定直线的距离的比等于离心率问题2:你能写出所得命题的逆命题吗?并判断真假?(逆命题中不能出现焦点与离心率)动点到定点的距离与它到定直线的距离的比等于常数的点的轨迹是椭圆【引出课题】椭圆的第二定义当点与一个定点的距离和它到一条定直线的距离的比是常数时,这个点的轨迹是椭圆定点是椭圆的焦点,定直线叫做椭圆的准线,常数是椭圆的离心率对于椭圆,相应于焦点的准线方程是根据对称性,相应于焦点的准线方程是对于椭圆的准线方程是可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义由椭圆的第二定义可得:右焦半径公式为;左焦半径公式为典型例题例1、求椭圆的右焦点和右准线;左焦点和左准线;解:由题意可知右焦点右准线;左焦点和左准线变式:求椭圆方程的准线方程;解:椭圆可化为标准方程为:,故其准线方程为小结:求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出例2、椭圆上的点到左准线的距离是,求到左焦点的距离为 .变式:求到右焦点的距离为 .解:记椭圆的左右焦点分别为到左右准线的距离分别为由椭圆的第二定义可知:又由椭的第一定义可知:另解:点m到左准线的距离是2.5,所以点m到右准线的距离为小结:椭圆第二定义的应用和第一定义的应用例1、 点p与定点a(2,0)的距离和它到定直线的距离的比是1:2,求点p的轨迹;解法一:设为所求轨迹上的任一点,则由化简得,故所的轨迹是椭圆。解法二:因为定点a(2,0)所以,定直线所以解得,又因为故所求的轨迹方程为变式:点p与定点a(2,0)的距离和它到定直线的距离的比是1:2,求点p的轨迹;分析:这道题目与刚才的哪道题目可以说是同一种类型的题目,那么能否用上面的两种方法来解呢?解法一:设为所求轨迹上的任一点,则由化简得配方得,故所的轨迹是椭圆,其中心在(1,0)解法二:因为定点a(2,0)所以,定直线所以解得,故所求的轨迹方程为问题1:求出椭圆方程和的长半轴长、短半轴长、半焦距、离心率;问题2:求出椭圆方程和长轴顶点、焦点、准线方程;解:因为把椭圆向右平移一个单位即可以得到椭圆所以问题1中的所有问题均不变,均为长轴顶点、焦点、准线方程分别为:,;长轴顶点、焦点、准线方程分别为:,;反思:由于是标准方程,故只要有两上独立的条件就可以确定一个椭圆,而题目中有三个条件,所以我们必须进行检验,又因为另一方面离心率就等于这是两上矛盾的结果,所以所求方程是错误的。又由解法一可知,所求得的椭圆不是标准方程。小结:以后有涉及到“动点到定点的距离和它到定直线的距离的比是常数时”最好的方法是采用求轨迹方程的思路,但是这种方法计算量比较大;解法二运算量比较小,但应注意到会不会是标准方程,即如果三个数据可以符合课本例4的关系的话,那么其方程就是标准方程,否则非标准方程,则只能用解法一的思维来解。例4、设ab是过椭圆右焦点的弦,那么以ab为直径的圆必与椭圆的右准线( )a.相切 b.相离 c.相交 d.相交或相切分析:如何判断直线与圆的位置关系呢?解:设ab的中点为m,则m即为圆心,直径是|ab|;记椭圆的右焦点为f,右准线为;过点a、b、m分别作出准线的垂线,分别记为由梯形的中位线可知又由椭圆的第二定义可知即又且故直线与圆相离例5、已知点为椭圆的上任意一点,、分别为左右焦点;且求的最小值分析:应如何把表示出来解:左准线:,作于点d,记由第二定义可知: 故有所以有当a、m、d三点共线时,|ma|+|md|有最小值:即的最小值是变式1:的最小值;解:f1amd变式2:的最小值;解:巩固练习1已知 是椭圆 上一点,若 到椭圆右准线的距离是 ,则 到左焦点的距离为_2若椭圆 的离心率为 ,则它的长半轴长是_答案:1 21或2教学反思1椭圆第二定义、焦半径公式、准线方程;2椭圆定义的简单运用;3离心率的求法以及焦半径公式的应用;课后作业1.例题5的两个变式;2. 已知 , 为椭圆 上的两点, 是椭圆的右焦点若 , 的中点到椭圆左准线的距离是 ,试确定椭圆的方程解:由椭圆方程可知 、两准线间距离为 设 , 到右准线距离分别为 , ,由椭圆定义有 ,所以 ,则 , 中点 到右准线距离为 ,于是 到左准线距离为 , ,所求椭圆方程为 思考:1方程表示什么曲线?解:;即方程表示到定点的距离与到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论