二次函数的图像 (3).doc_第1页
二次函数的图像 (3).doc_第2页
二次函数的图像 (3).doc_第3页
二次函数的图像 (3).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

阎良区六三中学20152016学年度第一学期教案学科: 数学 年级: 九年级 备课人: 陈春香 课题 二次函数的图像(1)课型新授课课时1课时9月18教 学 目 标知识与技能:使学生会用描点法画出y=a的图象,理解抛物线的有关概念。过程与方法:使学生经历、探索二次函数y=ax2图象性质的过程。情感、态度、价值观: 培养学生观察、思考、归纳的良好思维习惯重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象、会用待定系数法确定二次函数y=ax2的解析式; 难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。教具:(实验器材)白板教学方法:互动的教学方法 讲授法 练习法总结性训练 发现训练类比 板书设计:二次函数的图像形如物体抛射时所经过的路线,我们把它叫做抛物线,(1) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。(2) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。(3) 当时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。课后反思:作图的过程没必要放到课堂上来。可以事先在前置作业中让学生作图,在课堂上让学生汇报作图中遇到的困难,这样教师再去订正,效果要好很多。有时候就是要让学生经历“错误”的过程,这样他们才会懂。正所谓“我听到的,我会忘记;我见到的,我会记住;我做过的,我会理解二次函数的图像(1)教学过程:一、情境导入 师:1,同学们可以回想一下,一次函数的性质是如何研究的? 2我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?图象3一次函数的图象是什么?那么二次函数的图象是什么?板书课题二、范例师生:画二次函数y=的图象。解:(1)列表:在x的取值范围内列出函数对应值表:(生独立完成)x3210123y9410149 (2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点 (3)连线:用光滑的曲线顺次连结各点,得到函数y=的图象,如图所示。师:可做适当演示;提问:观察这个函数的图象,它有什么特点?生:讨论师:抛物线概念:像这样的曲线通常叫做抛物线。顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点三、做一做、议一议 1在同一直角坐标系中,画出函数y=与y=-的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2在同一直角坐标系中,画出函数y=2与y=-2的图象,观察并比较这两个函数的图象,你能发现什么?3. 在同一直角坐标系中,画出函数y=与y=2的图象,观察并比较这两个函数的图象,你能发现什么? 4将所画的函数的图象作比较,你又能发现什么?生:分组画图,分组讨论师生:达成共识:两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。 对于2,教师要继续巡视,指导学生画函数图象,两个函数的图象的特点;教师可引导学生类比1得出。 对于3,教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物线,都关于y轴对称,它的顶点坐标都是(0,0)四、思考、归纳与概括1.函数y、y=-、y=2、y=-2是函数y=ax2的特例,由函数它们的图象的共同特点,可猜想: 函数y=a的图象是一条_,它关于_对称,它的顶点坐标是_。2.如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么? 让学生观察y、y2的图象,填空;当a0时,抛物线y=a开口_,在对称轴的左边,曲线自左向右_;在对称轴的右边,曲线自左向右_,_是抛物线上位置最低的点。图象的这些特点反映了函数的什么性质?先让学生观察下图,回答以下问题;(1)点A与点B横坐标大小关系如何?是否都小于0?2) 点A与点B纵坐标大小关系如何?(3) 点C与点D横坐标关系如何?是否都大于0?(4) 点C与点D纵坐标大小关系如何?师生明确:当XO时,函数值y随X的增大而_;当X_时,函数值y=a (a0)取得最 值,最 值y=_3.观察函数y-、y=-2的图象, 让学生讨论、交流,达成共识:当aO时,抛物线y=ax2开口 ,在对称轴的左边,曲线自左向右 ;在对称轴的右边,曲线自左向右 , 是抛物线上位置最高的点。图象的这些特点,反映了当aO时,函数y=a的性质;进一步明确:当xO时,函数值y随x的增大而 ,当x=0时,函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论