【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)空间几何体的表面积和体积教学案.doc_第1页
【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)空间几何体的表面积和体积教学案.doc_第2页
【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)空间几何体的表面积和体积教学案.doc_第3页
【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)空间几何体的表面积和体积教学案.doc_第4页
【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)空间几何体的表面积和体积教学案.doc_第5页
免费预览已结束,剩余10页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节空间几何体的表面积和体积知识能否忆起柱、锥、台和球的侧面积和体积面积体积圆柱s侧2rlvshr2h圆锥s侧rlvshr2hr2圆台s侧(r1r2)lv(s上s下)h(rrr1r2)h直棱柱s侧chvsh正棱锥s侧chvsh正棱台s侧(cc)hv(s上s下)h球s球面4r2vr3 小题能否全取1(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为a时,该三棱锥的全面积是()a.a2b.a2c.a2 d.a2解析:选a侧面都是直角三角形,故侧棱长等于a,s全a232a2.2已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为()a12 b36c72 d108解析:选b依题意得,该正四棱锥的底面对角线长为36,高为 3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心为底面正方形的中心,其外接球的半径为3,所以其外接球的表面积等于43236.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积为()a24 b80c64 d240解析:选b结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩形,棱锥的高是5,可由锥体的体积公式得v86580.4(教材习题改编)表面积为3的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为_解析:设圆锥的母线为l,圆锥底面半径为r,则rlr23,l2r.解得r1,即直径为2.答案:25.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是_解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2.两部分加起来即为几何体的表面积,为2()答案:2()1.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和对侧面积公式的记忆,最好结合几何体的侧面展开图来进行2求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性3求组合体的表面积时注意几何体的衔接部分的处理几何体的表面积典题导入例1(2012安徽高考)某几何体的三视图如图所示,该几何体的表面积是_自主解答由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示)在四边形abcd中,作deab,垂足为e,则de4,ae3,则ad5.所以其表面积为2(25)42445454492.答案92由题悟法1以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量2多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理3旋转体的表面积问题注意其侧面展开图的应用以题试法1(2012河南模拟)如图是某宝石饰物的三视图,已知该饰物的正视图、侧视图都是面积为,且一个内角为60的菱形,俯视图为正方形,那么该饰物的表面积为()a.b2c4d4解析:选d依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为84.几何体的体积典题导入例2 (1)(2012广东高考)某几何体的三视图如图所示,它的体积为()a72b48c30 d24 (2)(2012山东高考)如图,正方体abcda1b1c1d1的棱长为1,e为线段b1c上的一点,则三棱锥aded1的体积为_自主解答(1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为3,高为4,半球的半径为3.vv半球v圆锥3332430.(2)vaded1veadd1sadd1cd1.答案(1)c(2)本例(1)中几何体的三视图若变为:其体积为_解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积vv圆柱v圆锥32432424.答案:24由题悟法1计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解2注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握3等积变换法:利用三棱锥的任一个面可作为三棱锥的底面求体积时,可选择容易计算的方式来计算;利用“等积法”可求“点到面的距离”以题试法2(1)(2012长春调研)四棱锥pabcd的底面abcd为正方形,且pd垂直于底面abcd,n为pb中点,则三棱锥panc与四棱锥pabcd的体积比为()a12 b13c14 d18解析:选c设正方形abcd面积为s,pdh,则体积比为.(2012浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是()a32 b24c8 d.解析:选b此几何体是高为2的棱柱,底面四边形可切割成为一个边长为3的正方形和2个直角边分别为3,1的直角三角形,其底面积s923112,所以几何体体积v12224.与球有关的几何体的表面积与体积问题典题导入例3(2012新课标全国卷)已知三棱锥sabc的所有顶点都在球o的球面上,abc是边长为1的正三角形,sc为球o的直径,且sc2,则此棱锥的体积为()a.b.c. d.自主解答由于三棱锥sabc与三棱锥oabc底面都是abc,o是sc的中点,因此三棱锥sabc的高是三棱锥oabc高的2倍,所以三棱锥sabc的体积也是三棱锥oabc体积的2倍在三棱锥oabc中,其棱长都是1,如图所示,sabcab2,高od ,vsabc2voabc2.答案a由题悟法1解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系2记住几个常用的结论:(1)正方体的棱长为a,球的半径为r,正方体的外接球,则2ra;正方体的内切球,则2ra;球与正方体的各棱相切,则2ra.(2)长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为r,则2r.(3)正四面体的外接球与内切球的半径之比为13.以题试法3(1)(2012琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()a2 b.c4 d.(2)(2012潍坊模拟)如图所示,已知球o的面上有四点a、b、c、d,da平面abc,abbc,daabbc,则球o的体积等于_解析:(1)由三视图可知几何体的直观图如图所示其中侧面dbc底面abc,取bc的中点o1,连接ao1,do1知do1底面abc且do1,ao11,bo1o1c1.在rtabo1和rtaco1中,abac,又bc2,bac90.bc为底面abc外接圆的直径,o1为圆心,又do1底面abc,球心在do1上,即bcd的外接圆为球大圆,设球半径为r,则(r)212r2,r.s球4r242.(2)如图,以da,ab,bc为棱长构造正方体,设正方体的外接球球o的半径为r,则正方体的体对角线长即为球o的直径,所以|cd|2r,所以r.故球o的体积v.答案:(1)d(2)1(2012北京西城模拟)某几何体的三视图如图所示,该几何体的体积是()a8b.c4d.解析:选d将三视图还原,直观图如图所示,可以看出,这是一个底面为正方形(对角线长为2),高为2的四棱锥,其体积vs正方形abcdpa222.2(2012山西模拟)已知矩形abcd的顶点都在半径为4的球o的球面上,且ab3,bc2,则棱锥oabcd的体积为()a.b3c2 d6解析:选a依题意得,球心o在底面abcd上的射影是矩形abcd的中心,因此棱锥oabcd的高等于,所以棱锥oabcd的体积等于(32).3(2012马鞍山二模)如图是一个几何体的三视图,则它的表面积为()a4 b.c5 d.解析:选d由三视图可知该几何体是半径为1的球被挖出了部分得到的几何体,故表面积为412312.4(2012济南模拟)用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为()a24 b23c22 d21解析:选c这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为22.5 (2012江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为()a. b5c. d4解析:选d由三视图可知,所求几何体是一个底面为六边形,高为1的直棱柱,因此只需求出底面积即可由俯视图和主视图可知,底面面积为122214,所以该几何体的体积为414.6.如图,正方体abcdabcd的棱长为4,动点e,f在棱ab上,且ef2,动点q在棱dc上,则三棱锥aefq的体积()a与点e,f位置有关b与点q位置有关c与点e,f,q位置都有关d与点e,f,q位置均无关,是定值解析:选d因为vaefqvqaef4,故三棱锥aefq的体积与点e,f,q的位置均无关,是定值7(2012湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是_解析:由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为,连接顶点和底面中心即为高,可求得高为,所以体积v11.答案:8(2012上海高考)若一个圆锥的侧面展开图是面积为2的半圆面,则该圆锥的体积为_解析:因为半圆的面积为2,所以半圆的半径为2,圆锥的母线长为2.底面圆的周长为2,所以底面圆的半径为1,所以圆锥的高为,体积为.答案:9(2013郑州模拟)在三棱锥abcd中,abcd6,acbdadbc5,则该三棱锥的外接球的表面积为_解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a、b、c,且其外接球的半径为r,则得a2b2c243,即(2r)2a2b2c243,易知r即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为4r243.答案:4310(2012江西八校模拟)如图,把边长为2的正六边形abcdef沿对角线be折起,使ac.(1)求证:面abef平面bcde;(2)求五面体abcdef的体积解:设原正六边形中,acbeo,dfbeo,由正六边形的几何性质可知oaoc,acbe,dfbe.(1)证明:在五面体abcde中,oa2oc26ac2,oaoc,又oaob,oa平面bcde.oa平面abef,平面abef平面bcde.(2)由beoa,beoc知be平面aoc,同理be平面fod,平面aoc平面fod,故aocfod是侧棱长(高)为2的直三棱柱,且三棱锥baoc和efod为大小相同的三棱锥,vabcdef2vbaocvaocfod2()21()224.11(2012大同质检)如图,在四棱锥pabcd中,底面是直角梯形abcd,其中adab,cdab,ab4,cd2,侧面pad是边长为2的等边三角形,且与底面abcd垂直,e为pa的中点(1)求证:de平面pbc;(2)求三棱锥apbc的体积解:(1)证明:如图,取ab的中点f,连接df,ef.在直角梯形abcd中,cdab,且ab4,cd2,所以bf綊cd.所以四边形bcdf为平行四边形所以dfbc.在pab中,peea,affb,所以efpb.又因为dfeff,pbbcb,所以平面def平面pbc.因为de平面def,所以de平面pbc.(2)取ad的中点o,连接po.在pad中,papdad2,所以poad,po.又因为平面pad平面abcd,平面pad平面abcdad,所以po平面abcd.在直角梯形abcd中,cdab,且ab4,ad2,abad,所以sabcabad424.故三棱锥apbc的体积vapbcvpabcsabcpo4.12(2012湖南师大附中月考)一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形(1)请画出该几何体的直观图,并求出它的体积;(2)证明:a1c平面ab1c1.解:(1)几何体的直观图如图所示,四边形bb1c1c是矩形,bb1cc1,bcb1c11,四边形aa1c1c是边长为的正方形,且平面aa1c1c垂直于底面bb1c1c,故该几何体是直三棱柱,其体积vsabcbb11.(2)证明:由(1)知平面aa1c1c平面bb1c1c且b1c1cc1,所以b1c1平面acc1a1.所以b1c1a1c.因为四边形acc1a1为正方形,所以a1cac1.而b1c1ac1c1,所以a1c平面ab1c1.1(2012潍坊模拟)已知矩形abcd的面积为8,当矩形abcd周长最小时,沿对角线ac把acd折起,则三棱锥dabc的外接球表面积等于()a8 b16c48 d不确定的实数解析:选b设矩形长为x,宽为y,周长p2(xy)48,当且仅当xy2时,周长有最小值此时正方形abcd沿ac折起,oaobocod,三棱锥dabc的四个顶点都在以o为球心,以2为半径的球上,此球表面积为42216.2(2012江苏高考)如图,在长方体abcda1b1c1d1中,abad3 cm,aa12 cm,则四棱锥abb1d1d的体积为_cm3.解析:由题意得vabb1d1dvabda1b1d13326.答案:63(2013深圳模拟)如图,平行四边形abcd中,abbd,ab2,bd,沿bd将bcd折起,使二面角abdc是大小为锐角的二面角,设c在平面abd上的射影为o.(1)当为何值时,三棱锥coad的体积最大?最大值为多少?(2)当adbc时,求的大小解:(1)由题知co平面abd,cobd,又bdcd,cocdc,bd平面cod.bdod.odc.vcaodsaodocodbdocodoccdcos cdsin sin 2,当且仅当sin 21,即45时取等号当45时,三棱锥coad的体积最大,最大值为.(2)连接ob,co平面abd,coad,又adbc,ad平面boc.adob.obdadb90.故obddab,又abdbdo90,rtabdrtbdo.od1,在rtcod中,cos ,得60.1两球o1和o2在棱长为1的正方体abcda1b1c1d1的内部,且互相外切,若球o1与过点a的正方体的三个面相切,球o2与过点c1的正方体的三个面相切,则球o1和o2的表面积之和的最小值为()a(63) b(84)c(63) d(84)解析:选a设球o1、球o2的半径分别为r1、r2,则r1r1r2r2,r1r2,从而4(rr)4(63).2已知某球半径为r,则该球内接长方体的表面积的最大值是()a8r2 b6r2c4r2 d2r2解析:选a设球内接长方体的长、宽、高分别为a、b、c,则a2b2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论