




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学案60随机事件的概率导学目标: 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式自主梳理1事件的分类(1)一般地,我们把在条件s下,_的事件,叫做相对于条件s的必然事件,简称_(2)在条件s下,_的事件,叫做相对于条件s的不可能事件,简称_(3)在条件s下可能发生也可能不发生的事件,叫做_,简称随机事件事件一般用大写字母a,b,c表示2频率与概率(1)在相同的条件s下重复n次试验,观察某一事件a是否出现,称_为事件a出现的频数,称事件a出现的比例_为事件a出现的频率(2)在相同的条件下,大量重复进行同一试验时,随机事件a发生的频率会在某个_附近摆动,即随机事件a发生的频率具有_,这个常数叫事件a的概率3事件的关系与运算定义符号表示包含关系如果事件a_,则事件b_,这时称事件b包含事件a(或称事件a包含于事件b)_(或_)相等关系若ba且_,那么称事件a与事件b相等_并事件(和事件)若某事件发生_,则称此事件为事件a与事件b的并事件(或和事件)_(或_)交事件(积事件)若某事件发生_,则称此事件为事件a与事件b的交事件(或积事件)_(或_)互斥事件若ab为_事件,那么称事件a与事件b互斥ab_对立事件若ab为_事件,ab为_事件,那么称事件a与事件b互为对立事件b_(或a_)4.概率的几个基本性质(1)概率的取值范围:_.(2)必然事件的概率:p(e)_.(3)不可能事件的概率:p(f)_.(4)概率的加法公式如果事件a与事件b互斥,则p(ab)_.(5)对立事件的概率若事件a与事件b互为对立事件,则ab为必然事件p(ab)_,p(a)_.自我检测1(2011台州月考)下列说法正确的是()a某事件发生的频率为p(a)1.1b不可能事件的概率为0,必然事件的概率为1c小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件d某事件发生的概率是随着试验次数的变化而变化的2(2011中山期末)如果把必然事件和不可能事件看做随机事件的极端情形,随机事件a的概率取值范围是()ap(a)0 bp(a)0c0p(a)1 d0p(a)13(2011中山期末)从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是()a3个都是正品 b至少有1个是次品c3个都是次品 d至少有1个是正品4袋中装有白球3个,黑球4个,从中任取3个,恰有1个白球和全是白球;至少有1个白球和全是黑球;至少有1个白球和至少有2个白球;至少有1个白球和至少有1个黑球在上述事件中,是对立事件的为()a b c d5(2011广州调研)关于互斥事件的理解,错误的是()a若a发生,则b不发生;若b发生,则a不发生b若a发生,则b不发生,若b发生,则a不发生,二者必具其一ca发生,b不发生;b发生,a不发生;a、b都不发生d若a、b又是对立事件,则a、b中有且只有一个发生探究点一随机事件的概念例1一个口袋内装有5个白球和3个黑球,从中任意取出一只球(1)“取出的球是红球”是什么事件,它的概率是多少?(2)“取出的球是黑球”是什么事件,它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件,它的概率是多少?变式迁移1某城市有甲、乙两种报纸供居民们订阅,记事件a为“只订甲报纸”,事件b为“至少订一种报纸”,事件c为“至多订一种报纸”,事件d为“不订甲报纸”,事件e为“一种报纸也不订”判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件(1)a与c;(2)b与e;(3)b与d;(4)b与c;(5)c与e.探究点二随机事件的频率与概率例2某中学部分学生参加全国高中数学竞赛取得了优异成绩,指导老师统计了所有参赛同学的成绩(成绩都为整数,试题满分120分),并且绘制了“频数分布直方图”如图,请回答:(1)该中学参加本次高中数学竞赛的学生有多少人?(2)如果90分以上(含90分)获奖,那么获奖的概率大约是多少?(结果保留分数)变式迁移2某篮球运动员在同一条件下进行投篮练习,结果如下表所示:投篮次数n8101520304050进球次数m681217253238进球频率(1)填写上表(2)这位运动员投篮一次,进球的概率约是多少?探究点三互斥事件与对立事件的概率例3(2011新乡模拟)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率变式迁移3一个箱子内有9张票,其号数分别为1,2,9,从中任取2张,其号数至少有一个为奇数的概率是多少?1随机事件在相同条件下进行大量试验时,呈现规律性,且频率总是接近于常数p(a),称p(a)为事件a的概率2正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件3求某些较复杂的概率问题时,通常有两种方法:一是将其分解为若干个彼此互斥的事件的和,然后利用概率加法公式求其值;二是求此事件a的对立事件的概率,然后利用p(a)1p()可得解(满分:75分)一、选择题(每小题5分,共25分)1从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是()恰好有1件次品和恰好有两件次品;至少有1件次品和全是次品;至少有1件正品和至少有1件次品;至少1件次品和全是正品a b c d2(2011广州模拟)下列说法:频率反映事件发生的频繁程度,概率反映事件发生的可能性大小;做n次随机试验,事件a发生m次,则事件a发生的频率就是事件a发生的概率;百分率是频率,但不是概率;频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;频率是概率的近似值,概率是频率的稳定值其中正确的是()a bc d3甲:a1、a2是互斥事件;乙:a1、a2是对立事件,那么()a甲是乙的充分条件但不是必要条件b甲是乙的必要条件但不是充分条件c甲是乙的充要条件d甲既不是乙的充分条件,也不是乙的必要条件4(2011平顶山月考)某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是()a至多有1次中靶 b2次都中靶c2次都不中靶 d只有1次中靶5(2009安徽)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于()a1 b. c. d0二、填空题(每小题4分,共12分)6从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5 g501.5 g之间的概率约为_7(2011福建)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个若从中随机取出2个球,则所取出的2个球颜色不同的概率为_8(2011上海)随机抽取的9位同学中,至少有2位同学在同一月份出生的概率为_(默认每个月的天数相同,结果精确到0.001)三、解答题(共38分)9(12分)(2011南京模拟)某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率10(12分)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?11(14分)现有8名奥运会志愿者,其中志愿者a1、a2、a3通晓日语,b1、b2、b3通晓俄语,c1、c2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组(1)求a1被选中的概率;(2)求b1和c1不全被选中的概率学案60随机事件的概率自主梳理1(1)一定会发生必然事件(2)一定不会发生不可能事件(3)相对于条件s的随机事件2.(1)n次试验中事件a出现的次数nafn(a)(2)常数稳定性3发生一定发生baababab当且仅当事件a发生或事件b发生abab当且仅当事件a发生且事件b发生abab不可能不可能必然4.(1)0p(a)1(2)1(3)0(4)p(a)p(b)(5)11p(b)自我检测1b2.d3.d4.b5.b课堂活动区例1解题导引解决这类问题的方法主要是弄清每次试验的意义及每个基本事件的含义,正确把握各个事件的相互关系,判断一个事件是必然事件、不可能事件、随机事件,主要是依据在一定条件下,所要求的结果是否一定出现、不可能出现(可能出现、可能不出现),它们的概率(范围)分别为1,0,(0,1)解(1)由于口袋内只装有黑、白两种颜色的球,故“取出的球是红球”是不可能事件,其概率是0.(2)由已知,从口袋内取出一个球,可能是白球也可能是黑球,故“取出的球是黑球”是随机事件,它的概率是.(3)由于口袋内装的是黑、白两种颜色的球,故取出一个球不是黑球,就是白球,因此,“取出的球是白球或是黑球”是必然事件,它的概率是1.变式迁移1解(1)由于事件c“至多订一种报纸”中有可能“只订甲报纸”,即事件a与事件c有可能同时发生,故a与c不是互斥事件(2)事件b“至少订一种报纸”与事件e“一种报纸也不订”是不可能同时发生的,故b与e是互斥事件由于事件b发生可导致事件e一定不发生,且事件e发生也会导致事件b一定不发生,故b与e还是对立事件(3)事件b“至少订一种报纸”中有可能“只订乙报纸”,即有可能“不订甲报纸”,即事件b发生,事件d也可能发生,故b与d不是互斥事件(4)事件b“至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件c“至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故b与c不是互斥事件(5)由(4)的分析,事件e“一种报纸也不订”是事件c的一种可能,故事件c与事件e有可能同时发生,故c与e不是互斥事件例2解题导引本题利用直方图求出获奖的频率,作为概率的近似值通过大量的重复试验,用这个事件发生的频率近似地作为它的概率是求一个事件的概率的基本方法注意频率是随机的、变化的,而概率是一个常数,频率在其附近摆动解(1)由频数分布直方图可知,参加本次数学竞赛的学生有46875232(人)(2)90分以上的人数为75214(人),获奖的频率为,即本次竞赛获奖的概率大约是.变式迁移2解(1)频率是在试验中事件发生的次数与试验总次数的比值,由此得,进球频率依次是,即0.75,0.8,0.8,0.85,0.83,0.8,0.76.(2)因为频率是概率的近似值,所以这位运动员投篮一次,进球的概率约是0.8.例3解题导引用互斥事件和对立事件的概率公式解题,关键是分清所求事件是由哪些事件组成的,然后结合互斥事件与对立事件的定义分析出是否是互斥事件与对立事件,再决定用哪一个公式利用互斥事件求概率体现了分类讨论的思想,利用对立事件求概率体现了“正难则反”的策略解方法一(利用互斥事件求概率)记事件a1任取1球为红球,a2任取1球为黑球,a3任取1球为白球,a4任取1球为绿球,则p(a1),p(a2),p(a3),p(a4),根据题意知,事件a1、a2、a3、a4彼此互斥,由互斥事件的概率公式,得(1)取出1球为红球或黑球的概率为p(a1a2)p(a1)p(a2).(2)取出1球为红球或黑球或白球的概率为p(a1a2a3)p(a1)p(a2)p(a3).方法二(利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即a1a2的对立事件为a3a4,所以取出1球为红球或黑球的概率为p(a1a2)1p(a3a4)1p(a3)p(a4)1.(2)因为a1a2a3的对立事件为a4,所以p(a1a2a3)1p(a4)1.变式迁移3解方法一从9张任取2张共有36种,记为(1,2),(1,3),(8,9),记事件a为任取2张,号数至少有一个为奇数,则a(1,2),(1,9),(2,3),(2,5),(2,7),(2,9),(3,4),(3,9),(8,9)共有8463422130.p(a).方法二事件a的对立事件为任取2张,号数都为偶数,(2,4),(2,6),(2,8),(4,6),(4,8),(6,8)共6种p(a)1p()1.课后练习区1d2b由概率的相关定义知正确3b由互斥事件、对立事件的定义可知互斥不一定对立,对立一定互斥,即甲是乙的必要条件但不是充分条件4c由互斥事件定义可知,如果两事件互斥,两个事件不能同时发生“至少有一次中靶”包括“恰有一次中靶”或“两次都中靶”故a、b、d都能同时发生5a由正方体的对称性知其六个面的中心构成同底的两个四棱锥,且四棱锥的各个侧面是全等的三角形,底面四个顶点构成一个正方形,从这6个点中任选3个点构成的三角形可分为以下两类:第一类是选中相对面中心两点及被这两个平面所夹的四个面中的任意一个面的中心,构成的是等腰直角三角形,此时剩下的三个点也连成一个与其全等的三角形第二类是所选三个点均为多面体的侧面三角形的三个点(即所选3个点所在的平面彼此相邻)此时构成的是正三角形,同时剩下的三个点也构成与其全等的三角形,故所求概率为1.60.257.解析从5个球中任取2个球有c10(种)取法,2个球颜色不同的取法有cc6(种),故所求概率为.80.985解析9位同学出生月份的所有可能种数为129,9人出生月份不同的所有可能种数为a,故p110.015 470.985.9解(1)设“该队员只属于一支球队”为事件a,则事件a的概率p(a).(6分)(2)设“该队员最多属于两支球队”为事件b,则事件b的概率为p(b)1.(12分)10解设事件a、b、c、d分别表示“任取一球,得到红球”,“任取一球,得到黑球”,“任取一球,得到黄球”,“任取一球,得到绿球”,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石家庄市第四十中学2025年高一下化学期末检测模拟试题含解析
- 2025届山东省新泰第一中学北校化学高一下期末学业质量监测试题含解析
- 2025届浙江省浙南联盟化学高一下期末教学质量检测试题含解析
- 校园读物日常管理办法
- 民工衣服库存管理办法
- 晚会捐赠收入管理办法
- 冬季水管防护管理办法
- 合肥苗木采伐管理办法
- 现代语文教育数字化资源整合平台建设研究
- 小企业会计准则的实务操作与案例分析
- 2024年辽宁沈阳水务集团有限公司招聘笔试真题
- 潍坊交通发展集团有限公司招聘笔试题库2025
- 胸痛中心质控管理
- 2025时政试题及答案(100题)
- 第七章城市轨道交通屏蔽门设备接口68课件
- 国家开放大学汉语言文学本科《中国现代文学专题》期末纸质考试第三大题分析题库2025春期版
- 成都大学附属中学英语新初一分班试卷含答案
- 新22J01 工程做法图集
- 创新创业大赛项目商业计划书模板
- 2025年1月国家开放大学汉语言文学本科《心理学》期末纸质考试试题及答案
- 糖尿病酮症酸中毒疑难病例护理
评论
0/150
提交评论