英文原文.pdf

机械类外文翻译【FY154】一种挖掘机的装载独立控制【中英文WORD】【中文3000字】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:446469    类型:共享资源    大小:2.51MB    格式:ZIP    上传时间:2015-07-03 上传人:棒*** IP属地:湖北
12
积分
关 键 词:
机械类 外文 翻译 fy154 一种 挖掘机 装载 独立 控制 节制 中英文 word 中文
资源描述:
机械类外文翻译【FY154】一种挖掘机的装载独立控制【中英文WORD】【中文3000字】,机械类,外文,翻译,fy154,一种,挖掘机,装载,独立,控制,节制,中英文,word,中文
内容简介:
安徽工业大学 毕业设计说明书 共 页 第 1 页 装 订 线 附录 中英文翻译 一种挖掘机的装载独立控制 摘要 这项研究主要焦点是调查挖掘过程由应用装载独立液压阀门控制。 这种方法准许避免闭合回路控制系统与传感器和变换装置装在挖掘机附件上。而传感器单元没有装在机器附件上,被考虑的系统由二次子系统组成:微型计算机和一个液压单元(泵和装载独立阀门)。在微型计算机单元中,铲斗的动力速度与三个液压缸流过的液压油有关。然后,油流程转移为电信号开动装载独立阀门。它们的动作由应用传递作用提出。系统的表现为检验油流入液压缸时的突然变速。本文的最后部分致力与获得的实验性结果。第一结果 处理垂直的钻井;第二个结果应付挖掘一条水平的轨道。 1、介绍 介于最近研究的令人鼓舞的结果,人类一系列对挖掘过程改进的努力的可能性将大大增加,着也许主要通过反复工作任务控制,譬如槽探和钻井,要求机器操作人员在执行各项任务 期间有稳定的表现,特别注意的是,在研究中,挖掘机应该适应沿着指定的轨道,在不同的土壤中工作。 挖掘机的基本控制过程是由佤哈、斯克呢司、合玛米、哈论和斯克尼德提出的。布丹和古柯尼斯克致力与挖掘机吊桶的感应转动装置在运动学中的应用的研究,在这种方法中,液压油流入液压缸的速度的很小的变化将影响 灵敏度分析,黄教授等提出了机器人挖掘机的阻抗控制研究方法,他们应用了两个神经网络:一个是源控制器,另一个是反馈目标阻抗。另外一个阻抗系统,致力于力与位置的混合控制,由哈教授提出。 机器人的第一代被假设成了“开环”安置设备,这暗示了所有零件必须被制造的具有很高精确性,其次,位置遥控机械装置与传感器可观地减少了对这个准确性的要求。这里是几种方法,作为参考,使机器人挖掘机提高产业机器人的工作能力,实施了力量单元细胞、纵向和有角量得传感器。但是,二个主要区别在制造机器人和机器人挖掘机得要求之间是应该注意的。第一区 别是,制造机器人工作在几乎完善的情况下,避免振动、湿气和其他可能残损的情况。第二个区别时制造机器人要求非常高得准确性,经常在微米之内。相反,机器人挖掘机得运转在非常困难得建造场所内,并且被运行得轨迹所要求的准确性和产业机器人相比,是有限的,经常在厘米之内,以挖掘机工作的困难情况,所有传感器被连接到吊杆、机械臂和铲斗之上必须被很好得保护。 记住上述区别,它将对通过液压模块(油泵和装载独立阀门)来检验控制挖掘轨迹产生很大作用。换句话说,研究系统传感器单元避免装在挖掘机附件上,结合反馈控制器,包括机器的液压单元。 本论文的主要宗旨将扩大讨论,由作者 10创始,装nts 安徽工业大学 毕业设计说明书 共 页 第 2 页 装 订 线 载独立阀门可能被安装在操作员的控制室里面。在这个假定外,系统避免传感器装在挖掘机附件上,以后谈论系统得数学模型,初步实验性结果被提出在本文得末端。 2 问题的声明 本文处理受控问题得声明,一个挖掘铲斗的行动沿一个被规定的道路,问题来源于早先作者的理论调查,对半静止运动学上导致的挖掘过程为假定抛物线的轨道。在这项研究中,可作如下假定:挖掘机附件是一个平面机制,由吊杆、机械臂、铲斗组成,三者独立地工作,由液压缸操作该系统,它们保证这三个独立部分能在一个平面内运动 ,两个位移和自转。 挖掘过程,根据演示实验,假定是足够慢的,把它作为一个半静止状态,惯性期限在附件的运动就可以被忽略了,只有伺服机械的短管轴被认为是在加速移动,这无法被忽略。 压力的干扰被认为采取正旋形式,理想的正旋值取决于系统的移动情况。 假定土壤环境类似,一些小的影响因素如小石头等是可以被接受的。 我们建议挖掘操作是人工协助的,这就意味着在遇到一个更大的障碍时,操作人员必须干预挖掘机的挖掘工作。 如果我们的假定成功,所提出的控制设定就能应用于一种标准的挖掘机,这种挖掘机将在更大范围内增强人类的安全作业能 力,比如槽探和钻井。 实验假设由三个系统组成:即微型计算机、 PLC 和液压部分(液压泵、阀门、液压缸),并且机制以三个自由度铲斗。其次,子系统被考虑作为组成部分,在第一子系统中,以下组成部分可被认为:个人计算机以专业的软件,变换行为和轨迹整平机以相等和不等形式转换为电信号,后者被送到 PLC 单元那些反过来控制电磁阀的电子驱动。压力从电磁阀产生变化在短管轴位置上,保证假定的油流量流入液压缸。短管轴位置,反过来被转换装置转换成一个电反馈信号输送到电磁阀中,被打开的短管轴让油流动到第三子系统,即挖掘机的液压缸。终于, 第二子系统由三个组成部分组成:液压缸、吊杆、机械臂、铲斗。挖掘机动作时,三个组成部分也在作相应的动作。关于这些信息的改变被输送到第二液压系统,在那里,反馈信号改变短管轴的位置,保证油流入被规定的弹道。 在本文中,所有系统组成部分将被用稳定观点调查研究,作用理论上被定义,或从数字图形上把液压设备加以编目,加上所有特殊组成部分的调动作用,整体系统的调动作用被谈论。这种观点表现在突然的单位信号以下。 几个实验被执行了,表示,假定铲斗的运动是固定的,在实验之中,一个致力于钻井,换句话说,运动学上所说的轨 道是平之的垂直线。实验所获得的线索被 6所证实,注意到,有趣的是,实验时线长的变化不超过 10cm。 3、实验行认识 3 1 微型挖掘机实验 微型挖掘机 K-11 用在了实验中,假设在一个连续的机器当中,最小的部分被替换掉,需要进行经过考虑的控制,在液压机构中主要部分被替换掉的是阀门。另外,液压缸加另外的阀门时需要一定的压力,这保证附件上的意外事件不会发生。被用于这个实验的液压装载独立阀门是由丹富斯提出的,信息从微型计算机上调入装载独立阀门是通过一个控制区域。 在液压机构的修改后,挖掘机可用于二种不 同的方式来控制。第一种方法由安置nts 安徽工业大学 毕业设计说明书 共 页 第 3 页 装 订 线 在操作员办公室里的操纵杆组成,用这种方法,操纵员能够以随意的速度反复移动机器至任意位置。第二种方法是在微型计算机编程吊桶的运动,从那里得到的信息转换为液压缸的伸长率,由液压油油量来移动它们,后者转换为一个电子信号通过控制区域网络输送到装载独立阀门,装载独立阀门的电系统机构显示在图 7 中 。 图 7 这种控制算法由波兰巴家私写出,并在 Windows98 中被执行,控制区域网络假定采样时间在 0.5 秒和 2 秒之间。 3.2 实验结果 为了审查所提议的控制系统的表现情况 ,上面提及的具有三个液压缸和三个自由度的微型挖掘机被使用了,一个电动液压阀门、一个装载独立阀门、一个比例阀门控制分开各个液压缸。 完成实验是为了控制吊桶的运动沿着直线,一个垂直线,一个是水平直线,像在问题的声明中被提及的,动作被控制在自由空间和装有类似湿度的潮湿沙子的土壤箱子里 实验以相对速率为没分钟两米执行,钻井所获得的弹道沿着一条垂直线,吊桶尖端的运动沿着一条水平线,两者在图 8 和 9 中被表示出来。 nts 安徽工业大学 毕业设计说明书 共 页 第 4 页 装 订 线 图 8 图 9 4、结论 一个相对简单的挖掘机的控制系统被提出来了,系统避免传感器安 装在机器的附件上,整个控制硬件是在装载独立阀门之内的,位于操作室内。通过更进一不的研究和改进,系统适用于大规模制造的挖掘机,帮助工作过程反复进行,比如开掘沟槽或钻井。 实验性结果被高质量的表现出来,并且,高质量的结果在水平线情况下是被允许的,在这里获得的弹道在直线的移动不超过 4%。较不准确的情况是在第二种情况下,即为垂直线。在这里,实验的运行错误将达到 15%,在其他当中,事实也许导致一个液压缸在运动中改变轨迹,它意味着在那时,它的卷轴将关闭液压油对两个液压缸末端的输送,同时,当这个液压缸的行动被阻碍时,另外 两个液压缸正在运动。这些判nts 安徽工业大学 毕业设计说明书 共 页 第 5 页 装 订 线 断在考虑改变当前模型时不得不考虑,这些改变将包括三个液压缸的联合控制系统,包括时间的延误对零流量缸改变其速度的影响。 ntsLoad-independent control of a hydraulic excavatorEugeniusz Budny*, Miroslaw Chlosta, Witold GutkowskiInstitute of Mechanized Construction and Rock Mining, ul. Racjonalizacji 6/8, 02-673 Warsaw, PolandAccepted 23 August 2002AbstractThe primary focus of this study is to investigate the control of excavation processes by applying load-independent hydraulicvalves. This approach allows avoiding closed loop control system with sensors and transducers mounted on the excavatorattachment. There are, then, no sensor cells mounted on the machine attachment. The considered system is composed of twosubsystems: a microcomputer and a hydraulic unit (a pump and load-independent valves). In the microcomputer unit, the bucketvelocity vector is related to the oil flow into three cylinders through the application of inverse kinematics. Then, flows aretransferred into the electric signals actuating the load-independent valves. Their motion is presented by applying transferfunction. The performance of the system is verified by assuming an abrupt change of the oil flow into cylinders. The last part ofthe paper is devoted to the obtained experimental results. The first result deals with vertical drilling. The second result dealswith an excavation along a horizontal trajectory.D 2002 Elsevier Science B.V. All rights reserved.Keywords: Excavator; Hydraulic systems; Control; Trajectory execution1. IntroductionDue to encouraging results of recent research,there are increasing possibilities for enhancement ofa large spectrum human efforts in excavation pro-cesses. This may occur mainly through control ofrepetitive work tasks, such as trenching and drilling,requiring constant attention of machine operatorsduring the performance of each task. Particularattention, in research, is paid to excavation alongprescribed trajectories subjected to varying soil envi-ronment.Fundamentals dealing with controlled excavationprocesses are discussed by Vaha and Skibniewski 1,Hemami 2, and Hiller and Schnider 3. An inter-esting approach to piling processes by a directangular sensing method is proposed by Keskinen etal. 8. Budny and Gutkowski 4,6 proposed asystem, applying kinematically induced motion ofan excavator bucket. In this approach, influence ofa small variation of hydraulic oil flow into cylinders,applying sensitivity analysis, is discussed by Gut-kowski and Chlgosta 5. Huang et al. 7 presentedan impedance control study for a robotic excavator.They applied two neural networks: first, as a feed-forward controller and the second as a feedbacktarget impedance. Another impedance system, apply-ing a hybrid position/force control, is proposed by Haet al. 9.The first generation of robots was conceived asopen loop positioning devices. This implied thatall parts had to be manufactured with a very high0926-5805/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.PII: S0926-5805(02)00088-2* Corresponding author.E-mail address: mch.pl (E. Budny).URL: /locate/autconAutomation in Construction 12 (2003) 245254ntsand costly accuracy. Next, positioning robots, withsensors, reduced this accuracy requirement consider-ably. Here were several approaches, mentioned inabove references, to extend the industrial robotscapabilities to robotic excavator. Systems of forcecells, longitudinal and angular sensors have beenapplied. However, two main differences betweenrequirements for manufacturing robots and roboticexcavators should be noted. The first difference isthat manufacturing robots are working in almostperfect conditions, free of vibrations, protectedagainst shocks, humidity, and other possible damag-ing conditions. The second difference is the require-ments for high accuracy of manufacturing robots,often within microns. On the contrary, robotic exca-vators are working in very difficult construction siteconditions, and required accuracy of the executedtrajectories, comparing with industrial robots, islimited, say within centimetres. With difficult con-ditions of excavations works, all sensors attached tothe boom, arm, and bucket have to be very wellprotected.Bearing in mind the above differences, it would beof interest to investigate the possibilities of controllingexcavation trajectory by a hydraulic module com-posed of a pump and load-independent valves. Inother words, to investigate a system free of sensorcells mounted at the excavator attachment, combinedwith a feedback controller, included in the hydraulicunit of the machine. The main objective of the presentpaper is to extend the discussion, initiated by theauthors 10, on the possibilities of applying load-independent valves installed inside of operator cabinonly. Under this assumption, the system is free ofsensors located on the excavator attachment. Afterdiscussing mathematical model of the system, pre-liminary experimental results are presented at the endof the paper.2. Statement of the problemThe paper deals with a controlled, stable motionof an excavator bucket along a prescribed path. Theproblem is based on previous authors theoreticalinvestigations 4 of quasi-static, kinematically in-duced excavation processes for assumed trajectories.In this study, the following assumptions are made.The excavator attachment is a planar mechanism,composed of a boom, an arm, and a bucket. Three,independently driven, hydraulic cylinders operate thesystem. They are assuring a unique representation ofthe three degrees of the planar bucket motion, twodisplacements and a rotation.The excavation process, in the experiments per-formed,isassumedtobeslowenoughtoconsideritasaquasi-static one. Inertia terms in motion equations ofattachment can be then neglected. Only spool of theservomechanism is assumed to move with accelera-tions, which cannot be neglected.The force (pressure) disturbances are assumed tohave sinusoidal form. The acceptable parameters of thesinusoid are defined from stability conditions of thesystem.The soil is assumed homogeneous. Some smallinclusions in the form of stones are acceptable.The proposed control system of excavation isoperator-assisted. It means that in a case of a largerobstacle, the operator has to intervene.If successful, the proposed control setup couldapply to standard excavators with the aim of enhance-ment of a large spectrum of human efforts in repetitiveprocesses such as trenching and drilling.The experiment is considered as a system com-posed of three subsystems, namely: microcomputerwith PLC; hydraulic arrangement (a pump, valves,cylinders); and the mechanism with three degrees offreedom of the bucket. Next, the subsystems areconsidered as sets of components. In the first sub-system, the following components are recognised:personal computer with appropriate software, trans-forming introduced equations and inequalities ofmotion and trajectory planers into electric signal.The latter is send to a PLC unit, which in turn causesan electrical actuation of solenoid valves. Pressuresfrom the solenoid valves are causing changes in spoolpositions, assuring assumed flow of the hydraulic oilinto cylinders. The spool position, in turn, is con-verted through a transducer to an electric feedbacksignal sent to the solenoid valves. Opened spools areletting the hydraulic oil to flow into the third sub-system, namely cylinders of the excavator mechanism.Finally, the last subsystem is composed of threecomponents: the hydraulic cylinders, the boom, thearm, and the bucket. With the motion of the excavator,arms and the bucket itself, the pressures in cylindersE. Budny et al. / Automation in Construction 12 (2003) 245254246ntsare changing. Information about these changes is sentto the second, hydraulic subsystem, where the feed-back signal corrects position of spools assuring the oilflow according to the designed trajectory.In the paper, transfer functions of all systemcomponents are investigated from the point of viewof stability. The functions are defined theoretically, ornumerically from diagrams presented in catalogues ofhydraulic equipment. Joining all transfer function ofparticular component, the transfer function of thewhole system is discussed from the point of view ofperformance under abrupt unit signal.Several experiments were performed, showing thatit is possible to assure stable, assumed motion of thebucket. Among experiments, one was devoted to drill-ing. In other words, the kinematically induced trajec-tory was a straight, vertical line. Experimentallyobtained line is presented in Refs. 6 and 10.Itisinteresting to note that the variation of experimentalline does not exceed 10 cm.3. Three subsystems of the experimental setupThe discussed system is divided in three sub-systems, namely: microcomputer, hydraulic valves,and excavator arms with a bucket. Below, they arediscussed separately and then a joint control prob-lem is defined.3.1. Microcomputer as a subsystemWe start with defining a model of the end-effector (bucket, drill, hammer) motion. The end-effector, in its plane motion, has three degrees offreedom aj(j=1,2,3) (Fig. 1). They are rotations ofthe boom, of the arm, and of the effector.Denoting by x1p, x2pposition of the end-effectortip, and by x3its rotation, the kinematics of theconsidered mechanism is represented by vectorrelation:x1px2px3p266664377775c1c2c30s1s2s30000a3266664377775C1l1l2l3266664377775; 1where cjand sjdenote cos ajand sin aj, respec-tively. In further considerations, the sub index p isomitted as the position of only one point is con-sidered.Velocity of the point P, v=v1, v2, v3T=x1,x2,x3Tis obtained by taking time derivative of Eq.(1), and by reducing 3C24 matrix to a 3C23 matrix:x v Aa Aw; 2whereA C0l1s1C0l2s2l3s3l1c1l2c2l3c3001266664377775: 3Taking inverse of A matrix equal to:AC01l2c2l1c10C0l2s2C0l1s10l2l3f23l1l3f13l1l2f12266664377775C11l1l2c1s2C0 s1c24with fij=sicjC0cisj, we find the inverse kinematics,relating angular velocities of mechanism elementsto the tip displacement vectorw AC01v: 5Angular velocities xj, in turn, are dependent on theelongation velocities hiof hydraulic cylinders. Thisdependence has to be determined from geometricalrelations between cylinder lengths, constant param-eters of attachment, and aj.We start with the first cylinder. From Fig. 2 we findcoordinates of two cylinders hinges, A1and B1.They are:x1A1 a0; x2A1 b0; x1B1 b1c1 a1s1;x2B1 b1s1C0 a1c1:Takingh21x1B1C0 x1A12x2B1C0 x2A22;E. Budny et al. / Automation in Construction 12 (2003) 245254 247ntsafter transformation we obtainh21 p01 q01c1 r01s1; 6wherep01 a20 a21 b20 b21;q01 2a1b0C0 a0b1;r01C02a0a1 b0b1:Taking time derivative of Eq. (6) we find:h1C0q01s1 r01c12h1C1 x1G1112h1C1 x1: 7Repeating the same consideration for the secondcylinder length (Fig. 3) we obtainh22 p02 q02f12 r02g128wherep02 a22 a23 b22 b23;q02C02a2a3 b2b3;r02 2a2b3C0 b2a3;Fig. 1. The mini-excavator considered.E. Budny et al. / Automation in Construction 12 (2003) 245254248ntsandfij cicjC0 sisj; gij sicj cisj: 9Taking again time derivatives of Eqs. (8) and (9), wearrive ath2C0q02g12 r02f122h2C1x1 x2G2122h2C1x1 x2: 10An expression representing the length h3of thethird cylinder is more complex, and requires intro-duction of an auxiliary variable a4(Fig. 4). With anew variable, there is a need to introduce an addi-tional relation. In this case, the relation joins varia-bles a2, a3,anda4, through the condition thatdistance between B3and D3is constant and equalto b7. After some lengthy transformation, theserelations take the following form:h23 p03 q03f24 r03g24; 11b27 p04 q04f23 r04g23 q05f24 r05g24; 12wherep03 a24 a25 a27 b24 b25 b4b5;q03C02a7a4C0 a5;r03 2a7b4C0 b5;p04 a25 a26 a27 b25 b26;q04 2b5b6C0 a5a6C0 a6a7;r04C02a5b6 a6b5;q05 2a5a7;r05C02a6a7:Fig. 4. The length h3of the third cylinder.Fig. 2. The length h1of the first cylinder.Fig. 3. The length h2of the second cylinder.E. Budny et al. / Automation in Construction 12 (2003) 245254 249ntsTaking time derivative of Eq. (11) and recallingthat aj=xj, the velocity h3can be presented as:h3C0q03g24 r03f242h3C1x2 x4G3242h3C1x2 x413The mentioned condition for b7in the form of Eq. (12)allows to find a4, and eliminates it from the otherequations. Taking now time derivative of Eq. (12), wecan express x4in terms of x2and x3x4C0G423G524 1C18C19C1 x2C0G423G524C1 x3; 14whereG423C0q04g23 r04f23;G524C0q05g24 r05f24:Combining, now, together Eqs. (7), (10), (13), and(14) in a vector notation, we can write:h H C1w 15withH12 H13 H23 H31 0;H11G1112h1;H12 H22G2122h2;H32 H33C0G324G4232h3G524:The flow of the hydraulic fluid into jth cylinder,denoted by qj, is equal to hjSj, where Sjis the cross-section area of the cylinder. With above notations,we can write the final relation between assumedvelocity vector of the end-effector and flow vectorq asq S C1H C1 AC01C1v 16where S is diagonal matrix with components Sj(j=1, 2, 3). The flow (Eq. (16) is a calculatedflow, which in our model is needed to move the endeffector according to its assumed motion. In a realsystem, this amount of oil has to be supplied to realcylinders through valves. The latter must be thenactuated by an electrical signal vector u. The relationof qj=qj(uj) between this signal and oil flow is givenby valve characteristic, which in general has theform presented in Fig. 5. The positive values of qjare related to the elongation of the cylinder. Thenegative ones are related to its shortening.The curve representing graphically qj(uj) can beassumed to be represented by the following function:qj a1u C0 ba3u C0 b3 a5u C0 b5; 17with constraints d imposed on maximum openings ofthe valve. Coefficients a1, a2, and a3can be deter-mined by fitting the function (17) at three points of thecharacteristic curve. In order to find electrical signal ujin terms of qj, we have to take the inverse of Eq. (17).In general, this can be achieved only through anumerical solution method.3.2. Hydraulic valve subsystem (HVS)The calculated in microcomputer, reference elec-trical signal is now converted into real electricalsignal, actuating the valve. In the problem discussedhere, this is a load-independent, proportional valvePVG 32 by DanfossR. The discussed subsystem ispresented in Fig. 6. Below, all of its parts and theirtransfer functions are discussed.Fig. 5. The oil flow q leaving the valve, as a function of uj.E. Budny et al. / Automation in Construction 12 (2003) 245254250ntsThe difference between reference signal ujand ud,and a signal coming from the feedback, is actuatingthe controller. The controller in turn, is adjusting thepump pressure ppto a pressure pcneeded for anadequate position of the spool. This adjustment isdone by four solenoid valves. Denoting by capitalletters the Laplace transforms, we find:UcsUjsC0UdsUjsC0HudsC1Ds;18where D(s) is Laplace transform of spool displace-ment d; Hudis a transfer function between the spooldisplacement and feedback signal ud.The latter is obtained by a transducer, with constantmultiplier, giving:HudsUdsDs Kd: 19The relation between UCentering the controller and pcleaving it is also constant:GpusPcsUcs Kc: 20The pressure acting on the spool is causing its motion,defined by an equation for one degree of freedom,with a spring constant ks, spool mass m, dampingcoefficient c, and cross-section area on which thepressure is acting As:md cd ksd pcAs: 21The transfer function between spool displacement dand pressure pcis then as followss2m sc ksC1DsPcsC1As: 22Considering now Eqs. (18)(21), we obtain the rela-tion between the transformed output of spool displace-ment and transformed reference input of electricalsignal:DjsAsC0 KcAsKcKd ks sc s2mC1 Ujs; 23or considering feedback electrical signal Ujd, we haveUjdsAsKcKds2m sc AsKcKd ks; 24With a constant nominator and denominator, in theform of a second order polynomial, we can verify theperformance of our control setup by assuming elec-trical signal equal to a unit step functionujtujut25which implies an abrupt change in the cylinder length.Considering now Eqs. (24) and (25), carrying apartial fraction expansion, and taking inverse Laplacetransforms, we find the error e(t) as a function of time:eteC0fxntcosxdtfxnxdsinxdtC18C19ujdt;26where2fxncm;x2nAsKcKd ksm;xd1 C0 f21=2xn;f 1 weak damping:Fig. 6. Hydraulic valve subsystem.E. Budny et al. / Automation in Construction 12 (2003) 245254 251ntsThe relation (26) shows that the error asymptoti-cally tends to zero with the increase of time.4. Experimental realization4.1. The mini-excavator used for experimentsThe mini-excavator K-111 is used for experiments.It was assumed to minimize part replacements, in aserial machine, needed to perform the consideredcontrol. The main components in the hydraulic systemto be replaced were valves. Moreover, the hydrauliccylinders are supplied with additional valves assuringrequired pressure. This ensures that unpredictedmotion of the attachment is not taking place. Thehydraulic load-independent valves used in this experi-ment were supplied by DanfossR. The transfer ofinformation from a microcomputer to load-independ-ent hydraulic valves is conducted by a ControlledArea Network (CAN).After modification of the hydraulic system, theexcavator can be controlled in two different ways.The first method consists in using joysticks mountedin the operator cab. This way, using a joystick, theoperator can move the mechanism in an arbitraryposition, and wit
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机械类外文翻译【FY154】一种挖掘机的装载独立控制【中英文WORD】【中文3000字】
链接地址:https://www.renrendoc.com/p-446469.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!