英文原文.pdf

机械类外文翻译【FY168】在液压系统中测量压力波传播速度【PDF+WORD】【中文6900字】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:446478    类型:共享资源    大小:779.58KB    格式:ZIP    上传时间:2015-07-03 上传人:棒*** IP属地:湖北
12
积分
关 键 词:
机械类 外文 翻译 fy168 液压 系统 测量 丈量 压力 传播速度 pdf word 中文
资源描述:
机械类外文翻译【FY168】在液压系统中测量压力波传播速度【PDF+WORD】【中文6900字】,机械类,外文,翻译,fy168,液压,系统,测量,丈量,压力,传播速度,pdf,word,中文
内容简介:
毕业设计 (论文 )外文资料翻译 系 别: 机电信息系 专 业: 机械设计制造及其自动化 班 级: 姓 名: 学 号: 外 文 出 处 :World Academy of Science, Engineering and Technology 49 2009 附 件 : 1. 原文; 2. 译文 2013 年 03 月 nts世界科学工程和技术 学院 49 期 2009 年刊 1 在液压系统中测量压力波传播速度 拉里克拉 , Vhoja 佩卡 摘要 :在使用压力电传感器没有消除积液 的 系统时,液压系统中的压力波速度 才能 被确 定。这和其他的研究结果比较, 它是 进行了一个较低的压力范围(0.2-0.6条 )的 测量。 与单独的测量设备相比 这个方法是不准确的测量,但是流体在实际 机器 整个时间的影响 下, 如果空气是存在于 该 系统 的,需 考虑进入 的 空气。通过计算空气的量 并且与其进行 对比, 来进行 估计其他 的 研究。因此,这种测量设备也可以安装在现有的机 器中, 可以被编程,以便它 实施使用,也 可以用于控制阻尼器 等 。 关键词 :体积弹性模量、压力波、声速。 1.介绍 压力波速度是 分析和设计液压系统 的 一个 重要的因素。它是许多模型动态码液压系统方程的一个 参数,也是阻尼器液压系统尺寸的一个重要参数。在压力波速度的帮助下液压系统的体积弹性模量可以被定义 , 反之亦然。 在许多研究中对于测量压力波速度都提出了许多不同的方法。通常这些测量方法被采用于单独的测量设备中 , 这样就可以远离原来的机器来测量流体。影响流体的某些因素有 : 如空气或水分。由于原始情况的不同 , 压力波速的测量结果可能不同。单独的波速测量仪表往往是这样设计的 : 测量流体至少可以删除夹带的空气。因此 , 在不考虑带 入 空气影响的测量结果 下, 或者只注意到有溶气时,这 都 并不符合真实的系统 。 因为空气是存在于流体中的 , 特别是 在低压力下。单独的压力波测量设备通常不能传输到机器 , 所以实时测量波速度 是 不可能的。 在许多早期的研究中压力波速度与超声波传感器一起测量。超声波技术可能是基于飞行时间或回波脉冲原则。这种方法非常准确,甚至可以精度到 0.005 m/s1, 虽然在文献 2-4还提出超声波技术好处的大错误 : 如长期稳定性、精度、灵敏度、光不透明、集中能力、电绝缘系统和自动化测量的可能性。然而 ,仪表设计和样本研究可能影响该方法的准确性 5。 另一种来定义压力波速度的方法是在基于测量液体体积弹性模量的使用方法下 来 确 定体积变化样本的压缩或膨胀 6-9。使用这种技术,可以防止不必要周围系统的样本压力梯度。有用的压力范围是宽度在 (0.1-350MPa)。夹带空气的量也可以被考 虑 ,缺点是需要先确定在明显大气压力和要求测量密度的样品 下,所有使用的特定压力。因此 , 该方法不能用于连续的实时测量。计算体积模量和压力波速度 (声速 ),详细的介绍在第二章 (1)和 (2)。 一些研究人员已经在液压油中使用压力传感器来检测压力波速度。 Harms 和 Prinke10提出了一种基于相位差分的方法。这 种 方法的激励应该不变 , 比 如nts世界科学工程和技术 学院 49 期 2009 年刊 2 泵荡漾 , 因为 信号是在计算出这些信号时差的两个点和波形速度的比较值10。 Cho et al11 和 Yu et al12测量波传播时间 并 计算 出了 一个压力信号 的 相关函数,方法是基于使压力测量成为可能 , 并使 在 考虑空气的影响 下 可以进行实时的测量。 另一个压力波速度方法的确定 , 被 Apfel 13提出。该方法是一种样本数量极其微小的 (4nl-4ul)绝热压缩系数和液体密度的测量技术。压力波速度可以从这些数据中计算出。这个方法是适用的 , 例如过冷或过热样品、生物或危险样品或当体积性质的液体在每一个案例必须确定小样本数量 时。流体研究的是在某个测试设备听觉上一个非混相液体的悬浮。众所周知,一个参考测量流体的属性是在同一位置测量。这个结果是相对准确的 (由传统方法在一个 2%的利润率相比下取相同的值 )。为了计算压力波速度,必须使用不同的设备测量密度。显然 , 这种实验方法只适用于 在 实验室 13-14里进行 。 压力波速度 (声速 )可以用来评估各种液体的重要特征属性。例如 , 它已经被用于确定油溶剂 4的浓度 , 来计算液压的物理性质和其它润滑液体 , 以及估计燃油 7和石油储集层 15-17的流体结构、脂肪油 18的力学性能 、石油分馏 3的物理性质、确定油水混合物 5和乳剂 2的组成或测量液体磁流变 (MR)19的性能。 最重要的是此研究的目的是开发一个压力波速度三位测量方法 , 这是使实时测量成为必要所需的 , 例如 , 实时液压控制系统的构造。另一个目标是将亥姆霍兹谐振器附加到该系统,为未来的研究收集数据。 2.理论压力波速度的确定 弹性材料的体积弹性模量 B被 定义为是压力变化和相对体积变化 压力变化的之比 , 其中 P是压力、 V是体积 20。 B=-dp/dv/v (1) 在本文中认为产生可听见的声音波是相似 的压力波。 因此 , 连续生产和扩张的那个介质作为处理纵向振动分子前后方向移动传播的压力波。这使那些在条纹中纵向波所产生的密度相似。正如在很多研究中的那样,本文也提到了,是通过限制一维下 的 波浪,考虑回避数学难度 21。值得注意的是 , 一个不携带材料的横波 , 只是波和它的能量在移动。 Cho et al11提 出了散装模量的三个定义 , 这 已广泛应用在许多教科书中。这些定义只适用于他们自己特定的条件 , 它 介绍了声波和体积弹性模量 (2),使用具有相同的值作为绝热体积弹性模量。声波的体积弹性模量 B来源于声波速度在流体的密度 11、 20。 B=a2 (2)在本文中 是密度 , a是波速度 (声速 )。方程 (2)可以计算出体积弹性模量或波速度 , 这就取决于哪一个是已知的因素。在本文中nts世界科学工程和技术 学院 49 期 2009 年刊 3 密度是已知的,波速可以测量 , 所以体积弹性模量 也 是可以计算出的。但随着相同的参数的影响,波速度也受到影响。而此时考虑 的是 理论 上的 体积弹性模量。 有效体积的主要影响因素是流体压力和温度价值模量的液压系统。他们的效果呈现在图 1中 。其他影响有效体积弹性模量值 的 因素 有 , 例如流体空气的含量 , 管刚度和接口条件之间的流体空气 12等 。 图 1 在 液压系统中 温度和压力波速度 之间的作用 示例 : 335.1K, 370.7K, 402.1K 5 夹带的空气中部分空气含量溶于一个分子 , 以小气泡的形式存在。只有一点点影响 到了 体积弹性模量 11, 但在一个流体夹带的空气体积是评估一个体积弹性模量最具影响力的变量。已经证明 , 夹带空气的百分之一可以降低有效体积弹性模量的 1085MPa, 它对应减少了 75%流体 22。应该指出的是 , 不仅有空气 ,还有其他气体都影响体积弹性模量和波速度,确定数量的气体比这种气体类型有一个更大的效应。低处油分子的重量越小 , 对波速度的影 响越大 23。 流体压力大部分作用于体积弹性模量 , 尤其是在较低的压力范围。影响气压体积弹性模量的原因是夹带的空气含量和流体溶解气之间的关系。当压力增加时一些夹带的空气变为溶解气 12, 也可以在分子水平上进行讨论压力 。 如果在研究低压力的流体 , 此时 和其他每个液体分子是容易配合的,大量的自由空间仍然是可用的。流体压缩的自由空间在较低压力 时会 降低的很快。当压力系统高时,自由空间几乎是可以忽略不计的。流体分子体积进一步下降及其相邻分子之间的相互作用 24。如果一个液压系统的压力超过 50条 , 自由的空气只有 微量的 9。 气泡在流体和等效流体的压缩性下,空气密度影响流体温度的大小。在分子水平上温度增大 会 引起流体的变化。发 生 更多剧烈的碰撞分子 , 可能最终会改变分子结构 , 此时 减少它们的有效体积是有可能的 24。从而温度对体积弹性模量和声波速度有一个重要的影响 , 特别是在动态的情况下 , 对这个温度的影响进行了研究 23。他们研究包括温度区间 -30C到 130C的影响 , 温度对声波速度 的影响 似乎是重要的。然而流体受温度影响,可以忽略流体温度常数 12, 并且在许多研究中都这样采取。此外 , 体积弹性模量的润滑油温度 在低压力时几乎可以独nts世界科学工程和技术 学院 49 期 2009 年刊 4 立存在 25。 密度和体积模量的固体部分 (如管道 ), 当温度和压力变化时不会随千差万别的密度流体变 10。因此 , 如果假定在一个液压系统中,体积弹性模量可以忽略管道刚度的影响 12, 压力波速度确定,流体的含水率也 就 扮演了一定的角色;它会稍稍降低压力波速度的值 23。流体的粘度也影响了压力波速度 26,但流体粘度取决于其在第一个地方的分子结构 , 因此随不同的液体黏性效应对压力波速度有一定的影响。 3.测试设备 测试设备和测量的原理在图 2和 3中分别描述,测量使用压电传感器 在两个点P1和 P2进行识别一个压力脉冲。两点之间的距离 P1和 P2(变量 L在图 3)和被用于测试的两个不同的距离是已知的。短的距离是 2.75米 , 长是 4.26米的 , 总是在 1.03米至 0.11米。压力波通过活塞在管道中是兴奋的 , 这使系统能够激发一个纯粹的压力波 。 因为避免了不必要的接口 , 这样反射和传输的波是最小的。这个活塞杆轻轻推但 能 迅速返回。球面旋塞阀和可调阀被安装在测试设备上 , 可测量控制流量和压力。这个属性是进行了在测量两个测量系列时使用。第一个是恒压下完成,两个阀门关闭没有节流。第二个是完成了节流 , 这样 (压力 )流量控制与可调阀的影响在波速度中是无关紧要的 , 在文本之后会出现。 测量进行了两天 , 可以假定温度为常数。测试设备不包括温度传感器 , 但测试设备是在同一个实验室 进行的, 以便使周围的流体温度可以认为是一样的。 使用最低的压力是 0.2条和最高的是 6.1条 , 和这些执行的 545个测量值之间的限制。测量结果的实例在图 4和 5进行分别描述。 测量系统包括一个 Kyowa PG-20KU压力传感器 (参考压力 ), 两个 Kulite HKM -375M-7barVG压力传感器 (用于在两个点识别一个压力波 ), Kyowa DPM-6H应变放大器 (Kyowa压力传感器 ), 一个 Thandar 30V-2A精度电源 (Kulite压力传感器 ),一个国家仪器的 USB-6211输入 16(16位 250kS/s)DAQ卡 , 一个惠普笔记本电脑nx9010 与微软 WindowsXP , DasyLab v.8.00.004 测量软件和 v.4.1.0.3001 Measurement&Automation探险家。测量频率是 25千赫 (0.04ms)、位数是 1024位的。 图 2 测试设备 nts世界科学工程和技术 学院 49 期 2009 年刊 5 图 3 测量原理 图 4 在检波点 (上、虚线 )和两个 (低 ,虚线 )反应的压力波。 因为流量检测 , 注意区别压力 。 图 5 相同时间检测的差异 体积流量测试设备可以与 Hagen-Poiseulle方程 (3)27被估计 , 其中 d是管直径、 是动态粘度 , l是管长度 , P1和 P2是 压力点 1和压力点 2。 (3) 从零到 0.5条 (管长度 2.75米 )或 ( 管长度 4.26米 )时测量压力会有所不同。这意味着是最大绝对流量 , 甚至故意高估了这些在 18C的温度 下 及其甚至不到 1.2升 /分钟 (0.4m/s)的 影响结果。 流体粘度是通过使用特定的重量 法 (在所需的温度下 称重准确体积的流体 )布鲁克菲尔德 DV-2+旋转粘度来计算密度。在 18C的温度下流体密度是 874千克 /立方米和在温度 40C下为 864千克 /立方米。动态流体的粘度在相应的 温度是 121 nts世界科学工程和技术 学院 49 期 2009 年刊 6 cP和 42 cP。流体是一个商业矿物油的液压油。 4.测量的结果 共对 545个测量进行了分析。平均压力的测量是 2.9条和平均压力波速 (声速 )的测量是 1377m/s。所有的测量结果呈现在图 6, 这表明压力范围在 0.2条和 6条下波速的重要性。在图 6中流动情况和非流动情况的测量结果是分开的 , 但作为计算之前识别流体的效果 , 这个测量的安排是不够准确的。因此 , 所有的结果都从此处处理。 图 6 545个所有的测量结果。 测量流 动 测定 非 流 动 所有的结果在表中显示,测量压力的精度可达到 0.1条,计算测量圆面积的压力下的平均波速。注意压力总是 使 用传感器的参考压力 (见参照图 3中 )。因此 ,在表中压力的第一列 (p),测量数量的压力范围在 -0.05pi0.14条。在第二列 (n)和平均波速度的测 量压力都在第三 列 (一个 )。结果在表中,见图 7。 表 1 在不同压力下 的 压力波速度。 P=压力的系统 (条 ), N=数量的测量, A=确定 的 压力波速度 (米 /秒 ) nts世界科学工程和技术 学院 49 期 2009 年刊 7 图 7 压力介于 0.2和 6.1条下计算平均压力的波速 通过压力传感器的放水螺丝测量消除空气的开始系统。在空气被开始测量从最低合理的压力 (0.2条 )和压力 增 大后大约每三个 就 影响 5条。只 对 以上 的 5条进行了测量 , 因为压力传感器的最大压力是 7条。这就解释了为什么在该地区会有从 5条到 6条相对更多的测量。所 以 , 在进行每一个第三次冲击压力直到输出水平降低。这 “ 斜坡测量 ” 是重复 的 四次 , 使用两个不同的测量距离和两个流动和非流动情况。应该指出的是 , 可调阀不是绝对紧 的 , 它允许一些压力泄漏 的 影响。这意味着在非流动的情况 下,这 三个压力减少了 一点点 影响。哪里的压力是常数就不存在流 动的 情况。这就解释了为什么一些压力包括更多的其他测量方法。 尽管测量频率是 25kHz, 不讨论这么准确的结果。在压力的结果下讨论了使用精度为 0.1条、误差在 0.1毫秒 (10 kHz)。这意味着测量结果应该比短管更准确 ,因为速度差受 0.1ms影响,如果波 速度大约是 1377米 /秒,约是 45米 /秒的长管和70m/s的短管。不再减少管的结果 , 这是真的 , 但值得注意的是 , 管子不能太长 ,因为脉冲是在流体阻尼和阻尼脉冲不出现大幅变化时的脉冲。看图 4和 5, 起点的两段脉冲是清晰的。另一个原因可能是因为减少色散的空气。当压力上升时 , 空气的体积百分比降低 , 相互之间脉冲测量系统的结果更稳定。 5.比较的结果 测量的平均压力波速度是 1377米 /秒。因此 , 在室温是 1.65的平均绩点下使用液体来计算体积弹性模量的值。在使用油时不好的是,我们没有散装模量和波速度的确切值。然而 , 它 可能的测量结果与其他研究者的结果进行了比较,以此来估计准确性的测量。 在 Tat et al的论文中 15,提出了用方程来计算密度、体积弹性模量和声速。作为一个函数在室温下的压力 (211C)。结果显示为表 2, 意味着区别两个不同压力的计算结果。 例如,不同的波 速度 (声速 )介于 1条和 5条之间是 0.11%。在这研究中安排测试,意味着以 0.11%的差异测量波 速度出为 12m/s。 它是不可能使nts世界科学工程和技术 学院 49 期 2009 年刊 8 用的 , 尽管 在图 7中波速度 它有一个提升的趋势 。 表 2 乙酯的 性能 15 Dzida和 Prusakiewicz17在他们的论文中提出了实测波速和用生物柴油密度作为温度的压力函数,在表 3中体现出 , 这 a意味着波速之间的差别计算结果,在两个不同的压力 (列 )或两个不同温度下 (行 )、 意味着区别两种不同温度下的密度。 表 3生物柴油的性能 17 这个是体积为 1.76平均绩点的生物柴油。表 3是在一个压力 5条和一个温度20C下用来解决波速度的结果。插入波速度的值 5条是 1417米 /秒 , 当压力改为 5条 时, 这表明不同的波速度只有 2米 /秒。 表 2和 3提出的密度是接近这研究中使用油的密度 , 所以他们可以使用至少在一个粗略的比较结果。介绍的示例结果表明 , 波速应当在 1400m/s、体积弹性模量应该接近 1.72的平均绩点。这项研究的结果有一点小差异,原因是不准确的,可能是测量或溶解夹带的空气所影响的。这里与在分子水平上的液体相比 , 可能它 也发挥了某些差异角色。然而 , 由于缺乏时间和所需要的设备,这不能被完全检查。现在预计测量的值 (1377m/s和 1.65GPa)是正确的 , 与其他研究人员结果的区别是由于空气系统内部。这个数量的空气可以被估计使用 (4)27。 Bfluid是流体的体积 , Vcyl是气缸的体积 , Vtot是系统的总量 , Bcyl是汽缸的体积弹性模量 , Vp是管道体积 , Bp是管道的体积弹性模量, Vh是软管、 Bh是体积弹性模量的软管 , Bair是空气的体积弹性模量。 nts世界科学工程和技术 学院 49 期 2009 年刊 9 这里汽缸的体积弹性模量 、 管和软管的液体体积的液体可以忽略不计。该系统也预期是绝热的 。 所以 (5)可以用来估计散装模量的空气 27。 ( 5) P是压力。 ( 6) B是 1650MPa(测量结果 ), Bfluid是 1720MPa(测量结果)、 Vtot是 1.78*104立方米 (如果距离 L是 2.75米的话,主要管从活塞到阀见图3)、 Bair是 0.406MPa(压力假定为 2.9条 )。现在有可能解决的空气体积: 这是主要管的 0.001%体积。显然 , 这计算只是一个估计 , 因为准确的油的属性用于这项研究是未知的。空气的影响在图 8中描绘。 图 8 分析空气含量对计算波速度效果的影响 6.结论 其他研究人员使用不同的方法获得,在测试设备中压力波速度 (声速 )是成功来衡量发达方法的结果 。 例如一个超声技术。提出的比较值 (表 2), 压力波速度的变化介于 0和 5条是微不足道的 , 使用测量技术提出研究它不能被检测到。然而 ,即使控制系统继续开发半主动阻尼器的过程 , 这种精度是足够的, 也 需要一个准确的传感器以单独的测量误差携入空气的影响来判断下一阶段的压力波。此外 ,准确温度控制将有利于未来的研究。 nts世界科学工程和技术 学院 49 期 2009 年刊 10 致谢 来自以 “ 动力学和控制直接驱动辊 (SMARTROLL)” 为题的项目的支持 , 这是对这项研究开始 的 可能性极大地承认。作者也非常感谢 Kalle Vahataini先生在测量方面很有价值的帮助。 参考文献 1 E. Hgseth, G. Hedwig, and H. Hiland, “Rubidium clock sound velocity meter,” Rev. Sci. Instrum., vol. 71, no. 12, pp. 4679-4680,2000. 2 G. Meng, A. J. Jaworski, and N. M. White, “Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers,” Chem. Eng. Process., vol. 45, pp. 383-391, 2006. 3 B. Lagourette, and J. L. Daridon, “Speed of sound, density and compressibility of petroleum fractions from ultrasonic measurements under pressure,” J. Chem. Thermodyn., vol. 31, pp. 987-1000, 1999. 4 C. Gonzlez, J. M. Resa, J. Lanz, and A. M. Fanega, “Speed of sound and isentropic compressibility of organic solvents + sunflower oil mixtures at 298.15 K,” JAOCS, vol. 79, no. 6, pp. 543-548, 2002. 5 S. J. Ball, A. R. H. Goodwin, and J. P. M. Trusler, “Phase behavior and physical properties of petroleum reservoir fluids from acoustic measurements,” J. Petrol. Sci. Eng., vol. 34, pp. 1-11, 2002. 6 H. S. Song, E. E. Klaus, and J. L. Duda, “Prediction of bulk moduli for mineral oil based lubricants, polymer solutions, and several classes of synthetic fluids,” J. Tribol. T. ASME, vol. 113, pp. 675-680, October 1991. 7 C. Aparicio, B. Guignon, L. M. Rodrguez-Antn, and P. D. Sanz, “Determination of rapeseed methyl ester oil volumetric properties in high pressure (0.1 to 350 MPa),” J. Therm. Anal. Calorim., vol. 89, pp. 13-19, 2007. 8 J. Kajaste, H. Kauranne, A. Ellman, and M. Pietola, “Experimental validation of different models for bulk modulus of hydraulic fluid,” in Proc. 9th Scandinavian Int. Conf. on Fluid Power, SICFP05, Linkping, Sweden, 2005, 16 p. 9 J. Kajaste, H. Kauranne, A. Ellman, and M. Pietola, “Computational models for effective bulk modulus of hydraulic fluid,” in Proc. 2nd Int. Conf. Computational Methods in Fluid Power, FPNI06, Aalborg, Denmark, 2006, 7 p. 10 H. H. Harms, and D. Prinke, “Messverfahren zur Bestimmung der Schallgeschwindigkeit in Minerallen,“ o+p lhydraulik und pneumatik, vol. 23, no. 3, pp. 191-194, 1979. In German. 11 B. - H. Cho, H. - W. Lee, and J. - S. Oh, “Estimation technique of air content in automatic transmission fluid by measuring effective bulk modulus,“ Int. J. Automot. Techn., vol. 3, no. 2, pp. 57-61, 2002. 12 J. Yu, Z. Chen, and Y. Lu, “The variation of oil effective bulk modulus with pressure in hydraulic systems,” J. Dyn. Systems T. ASME, vol. 116, pp. 146-150, March 1994. nts世界科学工程和技术 学院 49 期 2009 年刊 11 13 R. E. Apfel, “Technique for measuring the adiabatic compressibility, density, and sound speed of submicroliter liquid samples,” J. Acoust. Soc. Am., vol. 59, no. 2, pp. 339-343, 1976. 14 R. E. Apfel, R. E. Young, U. Varanasi, J. R. Maloney, and D. C. Malins, “Sound velocity in lipids, oils, waxes, and their mixtures using an acoustic levitation technique,” J. Acoust. Soc. Am,. vol. 78, no. 3, pp. 868-870, 1985. 15 M. E. Tat, J. H. Van Gerpen, S. Soylu, M. Canakci, A. Monyem, and S. Wormley, “The speed of sound and isentropic bulk modulus of biodiesel at 21 C from atmospheric pressure to 35 MPa,” JAOCS, vol. 77, no. 3, pp. 285-289, 2000. 16 M. E. Tat, and J. H. Van Gerpen, “Speed of sound and isentropic bulk modulus of alkyl monoesters at elevated temperatures and pressures,” JAOCS, vol. 80, no. 12, pp. 1249-1256, 2003. 17 M. Dzida, and P. Prusakiewicz, “The effect of temperature and pressure on the physicochemical properties of petroleum diesel oil and biodiesel fuel,” Fuel, 2007, doi:10.1016/j.fuel.2007.10.010. 18 F. Maleky, R. Campos, and A. G. Marangoni, “Structural and mechanical properties of fats quantified by ultrasonics,” J. Amer. Oil. Chem. Soc., vol. 84, pp. 331-338, 2007. 19 J. Kim, and K. - M. Park, “Material characterization of MR fluid at high frequencies,” J. Sound Vib., vol. 283, pp. 121-133, 2005. 20 A. L. Boehman, D. Morris, J. Szybist, and E. Esen, “The impact of the bulk modulus of diesel fuels on fuel injection timing,” Energ. Fuel., vol. 18, pp. 1877-1882, 2004. 21 L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics. 3rd ed., USA: John Wiley & Sons, 1982. 22 N. D. Manring, “The effective fluid bulk-modulus within a hydrostatic transmission,” J. Dyn. Systems T. ASME, vol. 119, pp. 462-466, September 1997. 23 E. Howells, and E. T. Norton, “Parameters affecting the velocity of sound in transformer oil,” IEEE T. Power Ap. Syst., vol. PAS-103, no. 5, pp. 1111-1115, 1984. 24 K. S. Varde, “Bulk modulus of vegetable oil-diesel fuel blends,” Fuel, vol. 63, pp. 713-715, 1984. 25 B. O. Jacobson, and P. Vinet, “A model for the influence of pressure on the bulk modulus and the influence of temperature on the solidification pressure for liquid lubricants,” J. Tribol. T. ASME, vol. 109, pp. 709- 714, October 1987. 26 M. Fukuhara, and T. Tsubouchi, “Naphthenic hydrocarbon oils transmissible for transverse waves,” Chem. Phys. Lett., vol. 371, pp. 184-188, 2003. 27 H. Kauranne, J. Kajaste, and M. Vilenius, Hydraulitekniikan perusteet. 3.-5. painos, Vantaa, Finland: Werner Sderstrm Osakeyhti, 2004. In Finnish. nts AbstractPressure wave velocity in a hydraulic system was determined using piezo pressure sensors without removing fluid from the system. The measurements were carried out in a low pressure range (0.2 6 bar) and the results were compared with the results of other studies. This method is not as accurate as measurement with separate measurement equipment, but the fluid is in the actual machine the whole time and the effect of air is taken into consideration if air is present in the system. The amount of air is estimated by calculations and comparisons between other studies. This measurement equipment can also be installed in an existing machine and it can be programmed so that it measures in real time. Thus, it could be used e.g. to control dampers. KeywordsBulk modulus, pressure wave, sound velocity. I. INTRODUCTION RESSURE wave velocity (sound velocity) is an important factor when hydraulic systems are analyzed and devised. It is a parameter in many equations that model the dynamics of hydraulic systems and it is also an important parameter when dampers of hydraulic systems are dimensioned. With the help of pressure wave velocity the bulk modulus of a hydraulic system can be defined, or vice versa. Different means for measuring pressure wave velocity are presented in many studies. Normally these measurements are carried out in separate measurement equipment, so that the measured fluid is removed from the original machine. This affects certain characteristics of the fluid, such as the amount of air or moisture concentration, and the results of pressure wave velocity measurements may differ from the original situation. Separate wave velocity measurement instrumentation is very often designed in such a way that at least entrained air can be removed from the measured fluid. Thus, the results of measurement do not take the effect of air into consideration, or only dissolved air is noticed. This does not correspond to real systems, because air is present in fluids, especially at low pressures. Separate pressure wave measurement equipment usually cannot be connected to the machine, so real-time measurement of wave velocity is impossible. In many earlier studies pressure wave velocity has been measured with ultrasonic transducers. The ultrasound technique may be based on, e.g. time-of-flight or pulse-echo principles. This method is very accurate; an accuracy of even 0.005 m/s can be achieved, 1 although larger errors have also been presented in the literature 2-4. Benefits of the ultrasound technique are, e.g. long-term stability, precision, sensitivity, capability of applying to optically opaque, concentrated and electrically non-conducting systems and the possibility to automate the measurement. However, instrumentation design and the sample studied may affect the accuracy of the method. 5. Another method for defining pressure wave velocity is to measure the bulk modulus of a fluid using a method based on determination of the volume change of the sample under compression or expansion. 6-9. Use of this technique prevents unwanted pressure gradients between the sample and the surrounding system. The useful pressure range of the method is wide (0.1-350 MPa). The amount of entrained air can also be taken into consideration. Drawbacks of the method are the need to first determine the specific volume of the sample under atmospheric pressure and the obvious requirement of measuring the density of the sample under all the pressures used. Thus, this method cannot be used for continuous real-time measurements. Calculation of the bulk modulus and furthermore the pressure wave velocity (sound velocity) is shown in (1) and (2) in chapter II. Some researchers have used pressure transducers to detect pressure wave velocities in oils. Harms and Prinke 10 presented a method based on phase difference. In this method excitation should be constant, e.g. pump rippling, because the signal is compared at two points and the value of the wave velocity is calculated from the time difference of these signals 10. Cho et al. 11 and Yu et al. 12 measured the wave propagation time and calculated a cross-correlation function of the pressure signals. Methods based on pressure measurements make real-time measurements possible and the influence of air can be taken into consideration. Yet another method for determining pressure wave velocity was presented by Apfel 13. This method is a technique that measures the adiabatic compressibility and density of a fluid when the sample amounts are extremely small, 4 nl - 4l. Pressure wave velocities can be calculated from these data. This method is applicable, e.g. for supercooled or superheated samples, biological or hazardous samples or in every case when the bulk properties of fluids have to be determined from small sample amounts. The fluid studied is acoustically levitated on an immiscible host liquid at a certain spot of the test equipment. A reference measurement of a fluid whose properties are well-known is made at the exact same spot. The results are relatively accurate (within a 2 % margin compared with the same values determined by traditional methods). In order to calculate pressure wave velocities, the density of the Measuring Pressure Wave Velocity in a Hydraulic System Lari Kela, and Pekka Vhoja P World Academy of Science, Engineering and Technology 49 2009610nts sample has to be measured using different equipment. Obviously, this method is suitable for laboratory experiments only. 13-14. Pressure wave velocity (sound velocity) can be used to evaluate various important characteristic properties of fluids. For instance, it has been used to determine the concentration of solvents in oils 4, to calculate the physical properties of hydraulic and other lubricating fluids, as well as fuel oils 7, 15-17, to estimate the structural and mechanical properties of fats 18 and the physical properties of petroleum fractions and petroleum reservoir fluids 3, 5 and to determine the composition of oil-water mixtures and emulsions 2 or to measure the properties of magnetorheological (MR) fluids 19. The most important aim of this study was to develop a method for measuring pressure wave velocity that enables real-time measurements, which are necessary if, e.g. real-time control systems for hydraulics are constructed. Another aim was to collect data for future research with a Helmholtz resonator attached to this system. II. THEORETICAL ASPECTS OF PRESSURE WAVE VELOCITY DETERMINATIONS The bulk modulus of elastic material B is defined as the quotient of pressure variation and relative volume variation affected by pressure variation B = VdVdP (1) where P is pressure and V is volume 20. Pressure waves considered in this paper are similar to waves that produce audible sound. Thus, pressure waves are handled as longitudinal vibration molecules moving back and forth in the direction of propagation of the wave, producing successive condensations and expansions in the medium. These alterations of densities are similar to those produced by longitudinal waves in a bar. As seen in many studies, mentioned also in this paper, the difficulty of the mathematics is sidestepped by restricting the waves under consideration to one dimension. 21. It is worth noting that a travelling wave does not carry material, just the wave and its energy move. Cho et al. 11 have presented three definitions for bulk modulus, which are widely used in many textbooks. These definitions are only applicable to their own specific conditions, and in this paper the sonic bulk modulus (2) is used, which has the same value as the adiabatic bulk modulus. The sonic bulk modulus B is derived from the sonic velocity in the fluid and fluid density 11, 20 B = a2(2) where is density and a is wave velocity (sound velocity). Equation (2) can be solved for the bulk modulus or wave velocity, depending on which one is the known factor. In this paper density is known and wave velocity is measured, so the bulk modulus can be calculated. But as (2) presents, the same parameters that affect the value of wave velocity also affect the bulk modulus and this is taken into consideration in the theory review. The main factors that affect the value of the effective bulk modulus of a hydraulic system are fluid pressure and temperature. Their effects are presented in Fig. 1. Other factors that affect the value of the effective bulk modulus are, e.g. the air content of the fluid, pipe rigidity and interface conditions between the fluid and the air 12. Fig. 1 Effect of temperature and pressure on wave velocity in an oil sample: 335.1 K, 370.7 K, 402.1 K 5 Part of the air content dissolves in a molecular form and the rest of it, entrained air, exists in the form of small bubbles. Dissolved air has only a little effect on the bulk modulus 11, but the volumetric percent of entrained air within a fluid is one of the most influential variables when the bulk modulus is evaluated. It has been proved that one percent entrained air can reduce the effective bulk modulus of a fluid by as much as 1085 MPa, which corresponds to a 75 percent decrease in the fluid manufacturers value 22. It should be noted that also other gases, not only air, affect the bulk modulus and sonic wave velocity, and the type of gas has a greater effect than does the quantity of the gas 23. The lower the molecular weight of the gas, the greater the effect on the sonic wave velocity 23. Fluid pressure has an effect on the value of the bulk modulus, particularly in the lower range of pressure. One reason for the effect of pressure on the bulk modulus is the relationship between entrained air content and dissolved air content in a fluid. Some entrained air becomes dissolved air when pressure increases. 12. The influence of pressure can be discussed at the molecular level, also. If the pressure of the fluid under study is low, the fluid molecules fit among each other easily and a significant amount of free space is still available. When the fluid is compressed, the free space decreases quickly at lower pressures. When the pressure of the system is high, the free space is almost negligible. At this point a further decrease in volume is connected with interactions between fluid molecules and their neighbouring molecules. 24. If a hydraulic systems pressure is more than World Academy of Science, Engineering and Technology 49 2009611nts 50 bar, the effect of free air is only minor 9. Fluid temperature affects the density of the air content, the size of air bubbles in the fluid and therefore the equivalent compressibility of the fluid. An increment of temperature also causes changes in the molecular level of the fluid. More vigorous collisions between molecules are observed, which may eventually cause changes in molecular structures, and a decrease in their effective volume is probable. 24. Thereby temperature has an important influence on the bulk modulus and sonic wave velocity, especially in dynamic situations. The influence of temperature has been studied, e.g. by 23. Their studies included a temperature range between -30 C and 130 C, and the effect of temperature on sonic wave velocity seemed to be significant 23. However, the effect of fluid temperature can be ignored if the fluid temperature is approximately constant 12, and in many studies this has been done. In addition, the bulk modulus of lubricating oils at low pressures can be almost independent of the temperature 25. The density and bulk modulus of solid parts (e.g. pipes) will not vary as much as the density of a fluid when temperature and pressure vary 10. Thus, the effect of pipe rigidity on the bulk modulus can be ignored if rigid pipes are assumed in a hydraulic system 12. The moisture content of the fluid may also play a role if pressure wave velocities are determined; it slightly reduces the value of the pressure wave velocity 23. The viscosity of the fluid also affects the pressure wave velocity 26, but of course the viscosity of a fluid depends on its molecular structure in the first place, hence the effect of viscosity on the pressure wave velocity varies with different fluids. III. TEST EQUIPMENT The test equipment and the principle of measurement are depicted in Figs. 2 and 3, respectively. The measurements were carried out by identifying a pressure pulse at two points, P1and P2, using piezo sensors. The distance between points P1and P2(variable L in Fig. 3) is known and two different distances were used in the tests. The shorter distance was 2.75 m and the longer was 4.26 m. Distances L1and L2were always 1.03 m and 0.11 m, respectively. A pressure wave was excited by means of a piston inside a pipe. This excitation system enables excitation of a pure pressure wave, because unnecessary elbows and interfaces are avoided, so that reflections and transmissions of the wave are minimized. The piston was moved lightly but rapidly with a hammer. A spherical plug valve and an adjustable valve were installed in the test equipment so that flow and pressure could be controlled during the measurements. This property was used in the measurements so that two measurement series were carried out. The first one was done under constant pressure without flow with the both valves closed. The second one was done with flow, so that flow (and pressure) was controlled with the adjustable valve. The effect of flow on wave velocity is insignificant, as seen later in the text. The measurements were carried out over two days so that temperature could be assumed to be constant. The test equipment did not include a temperature sensor, but the test equipment was inside a laboratory so that the fluid temperature could be assumed to be the same as the surrounding temperature. The lowest pressure used was 0.2 bar and the highest was 6.1 bar, and 545 measurements were executed between these limits. Examples of the measurement results are depicted in Figs. 4 and 5. The measurement system included one Kyowa PG-20KU pressure sensor (for reference pressure), two Kulite HKM-375M-7barVG pressure sensors (for recognizing a pressure wave at two points), a Kyowa Strain Amplifier DPM-6H (for the Kyowa pressure sensor), a Thandar 30V-2A precision power supply (for the Kulite pressure sensors), a National Instruments USB-6211 16-input (16 bit 250 kS/s) DAQ card, a HP Compaq nx9010 laptop computer with Microsoft Windows XP, DasyLab v.8.00.004 measurement software and Measurement&Automation Explorer v.4.1.0.3001. The measurement frequency was 25 kHz (0.04 ms) and the block size was 1024 bit. Fig. 2 Test equipment Fig. 3 Principle of the measurements Fig. 4 Response of the pressure wave at detection point one (upper, dotted line) and two (lower, dashed line). Note the pressure difference between the detection points because of flow World Academy of Science, Engineering and Technology 49 2009612nts Fig. 5 Same case as above. The time difference between the detection points can be read from the survey box. Note that the lines are modified for publishing by decreasing their resolutions notably from the original The volume flow of the test equipment Q can be estimated with the Hagen-Poiseulle equation (3) 27 Q = )(128214ppld(3) where d is pipe diameter, is dynamic viscosity, l is pipe length, p1is pressure at point 1 and p2is pressure at point 2. During the measurements pressure will vary from zero to 0.5 bar (pipe length 2.75 m) or to almost one bar (pipe length 4.26 m). This means that the absolute maximum flow, which is even overestimated here on purpose, is constantly less than 1.2 l/min(0.4 m/s) at a temperature of 18 C and its effect on the results is impossible to notice in this arrangement. Fluid viscosity was measured with a Brookfield DV-II+ rotation viscometer and density by using the specific weight method (weighing an accurate volume of the fluid at the desired temperature). Fluid density was 874 kg/m3at a temperature of 18 C and 864 kg/m3at a temperature of 40 C. The dynamic fluid viscosities at the corresponding temperatures were 121 cP and 42 cP. The fluid was a commercial mineral oil-based hydraulic oil. IV. RESULTS OF MEASUREMENTS Altogether 545 measurements were analyzed. The average pressure of the measurements was 2.9 bar and the measured average pressure wave velocity (sound velocity), 1377 m/s. The results of all the measurements are presented in Fig. 6, which indicates the magnitude of the wave velocity in the pressure range between 0.2 bar and 6 bar. In Fig. 6
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:机械类外文翻译【FY168】在液压系统中测量压力波传播速度【PDF+WORD】【中文6900字】
链接地址:https://www.renrendoc.com/p-446478.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!