




文档简介
Jounalofm atenalsprocesingtechnolgy63(197)81-86ExperimentandstudyintotheaxildriftingofthecylinderofaweldingrolerbedFengangshen,xidepan,jinxueWeldingresarchinstiute,xianjiaotnguniversity.Xian.shanxiprovince71049.P.R.chinaAbstractThebasictheoryoftheaxildriftingofthecylinderofaweldingrolerbedisintroducedinthepaer,andathesam etim eexperim ntandstudyonthem chanism oftheaxildriftingofthecylinderhavebendoneonaexperim ntalm odeloftheweldingrolerbed.Itishownthathem aincauseoftheaxildriftingofthecylinderliesinthexistenceofaspiralnglebetenthecylinderandthecylinderandtheroler.therelativeaxilm otinsbetwentherolerandthecylinderarecom pseofspiralm otin,elasticslidingandfrictionalsliding.Thetheoryofcom patiblem otinandno-com patiblem otinisputforwardfortheaxilm otinsofthecylinder.therlativeaxilm otinsofthecylinder.Therlativeaxilm otinbetwentherolersandthecylinderiscordinatedbyelasticslidingandfrictionalslidingbetwenthemKeywords:weldingrolerbed;cylinder;roler;axilm otin;spiralngle1IntroductionInweldingproduction,theasem blyandcirularseam weldingofrotaryworkpiecs,uchasboiler,apetrochem icalpresurevselandson,areconductedon;aeldingrolerbed.WhenrotaingOnaweldingrolerbed.Thecylindewilinevitablyproduceaxildriftingduetom anufacturing,asem blingtoleranceoftheweldingrolerbedandthecylindersurfaceiregularity(divergiufrom anidealrotaryorkpiec),thustheweldingprocedurem aynotbecariedoutsucesfuly.Itisnecsary,therfore,tostudythem chanism oftheaxildriftingofthecylindertoslvetheproblem oftheaxildriftingofthecylinderincirum ferntialwelding.Thersultsofthersearchwilbenfithestudyinganddesignigofantidriftingeldingrolerbed.especialytheanlysioftheapliedforcesonthebed,andleadtodetrm inigthem anufacturingandasem blingtoleranceofthebed,andprovidingthebasioftheoryforthem chanicaladjustingm odetoavoidaxildrifting,theadjustingm odeofclosedciruitinthecontrolciruit,andtheslectionftheadjustingvalue.2.Theoreticalanlysi2.1WeldingrolerbedandcylinderAweldingrolerbedisgenralycomposedofourolers.Drivenbythedrivngroler,thecylindermakesarotaryuniformotionarounditsaxis(howninFig.I),duringwhichthecircumferntialweldingprocedureiscariedoutInFig.1,aisthecntralngle,Sisthesuportingdistance,Listhespanoftheroler.andV,isthecircularlinearvelocityofthecylinder,alsonamedtheweldingvelocity2.Theaxisofthecylinderwilbenotparleltothatofaroleriftherolerisdeflctedbyacertainanglefrom thedealpositon,orifthecentrsofthefourrolerslieintheverticesofasim plequadrilateral,orifthecentrsofthefourrolersarenotonthesam eplane,oriftheciru-larityofthecylinderisiregularbecauseofdeviationinm aufacturingandasem bling. Thus.thecylinderwilnevitablym ovealongitsaxiswhenrotaingonabedthecontactofthecylinderandarolercanbecansiderdaspointcontactifcytindersaxisandrolersaxisdonotlieinthesam eplane.SuposePisthepointofcontact.thecylindersnorm al planeAisdefinedbytheplaneonwhicarethecylindersaxisandgenratrixnacrosthepointoftangencyonthecylinder(showninfig2)m akeacylinderstangentplaneBacrospointP.Thus,planeAisverticaltoplaneB.lcisacylinderstangentacrosPandliesinplaneB.Iristherolerstangentacrosthesam epointP,andliesinplaneBalso.Ingenral, isdefinedastheaxildeviationanglebetwentherol!ersaxisandthecylindersaxis; isdefinedasthespiralnglebetwengenratrixnandm .aprojectivelineobtainedbyprojectingtherolersgenratrixm acrospointponplaneBand isdefinedastheprojectiveanglebetwennandm ,aprojectivelineobtainedbyprojectingm onplaneA.Fig.3indicatesthattherela-tionshipam ongst thethreanglesistan =tan2 -tan2InFig.3,SB,S andS ,arecaledthespiraldisplace-m nt vector,theaxildeviationdisplacem nt vectorandtheprojectivedisplacem nt vectorrespectively.theirrelationshipbeing:Fig.2Geom tricrelationshipbetwenthecylinderandanindivdualrolerFig.3Relationshipbetwentheanglevectorandthedisplacem nt vector2.2relativeaxilm otinsrelationship(1)spiralm otin2.Fig.4Com pnet ofaxilvelocityBecausetherolersaxisisnotparleltothecylin-derscentralline,therisaspiralangle betwenVr,.andVc,onthepointofcontact(showninFig.2).Whentherolerandcylinderrotaesynchronisticalyaroundtheironaxes,drivenbytangentialfrictionalforce.aspiralefctwilocurbecauseofthediferntlinearvelocitydirectionbetwentherolerandthecylinderatpointPofcontactThecylinderhasacom pnet ofaxilvelocity,wherVcisthecirularlinearvelocityofthecylinder. isthecylindersaxilcom pnet velociryexrtedbysingleroler,andjcanbe1.2,3,4,represntigthefourrolers,respectively.(2)ElasticslidingBecauseoftheexistenceofaspiralangle,anaxilforceFajactsoncylinder.Whentheforceislesthanthem axim um axilfrictionalforcefNj(wherfisthefrictionfactor,andNjisthenorm al presurebetwenasinglerolerandthecylinder),thecylinderwilslideelasticalyovertheroleralongtheaxildirection23Thecom pnet oftheslidingvelocityis.whereistheelasticslidingfactorform etalicroler.=O.l0.5.(3)FrictionalslidingWhenajisgreatrthanthem axim um frictionalforcefNj,thecylinderwilm akeafrictionalslidingovertheroler.TheslidingresitanceisfNj3.Thecom pnet ofthefrictionalslidingvelocityonCylinderisVajthem agnitudeanddirectionofwhiccanbedetrm inedbytheuniversalrelationshipbetwenthecylinderandthefourrolersFrictionalslidingwilleadtotheearandtearofthesurfaceofthecylinderandtherolers.whicisunexpectdinweldingproductionWhenthecylinderdrifts,abovethrekindsofm otindonotocursim ultaneouslyIherforc.theaxildriftingvelocityofthecylinderisnotthealgebraicsum ofthethrecom pnetsofvelocityInthecaseofelasticsliding,theaxilvelocityis.2.3axilm otinofthecylinderonaweldingrolerbed2.3.1Axialcom patiblem otinUnderidealconditons,whenspiralangles jbetwenthecylinderandthefourrolersarealthesam e, thatis: 1= 2= 3= 4=thecylinderwilm oveithcom patiblespiralm otin.Twocategoriescanbeclasifedtoanlyzetheaxilm otinofthecylinder:(I)Whentherdoesnotexistanaxilcom pnet duetogravity.thecylindersaxildriftingvelocityis:Va=c*tan(2)Whentherexistanaxilcom pnetofgravityGatherexistanaxilforceonthecylinder.Now,theaxilforcesexrtedonthefourrolershavethesam edirectionalAndm agnitude,thevaluebeingequaltoGabesuesthecom pnetofspiralvetocity,therexistcom pnetofelasticonthecylinderthecylindersaxildriftingvelocityis2.3.2.axilno-com patiblem otinIngenral.spiralangles jbetwenthecylinderandthefourrolersarenotequaltoeachotherinsizeandirection.i.e.thegeom tricrelationshipsbetwenthecylinderandthefourrolersarealinconsitentTherfore,thecom pnetsofthecylindersaxilvelocityaginstfourrolers(i.eVc*ta j)arenotidenticaltoeachanother.Thecylinderwilm ovewithaxilnom patiblem otinTheaxilvelocitesofthecylinderaginsathefourrolersshouldbethesam ebecausethecylinderisconsiderdasarigdbodyasawholeandithasonlyoneaxilvelocity.Howevr.forsom eroler,Vc.tan jandthecylindersrealaxilvelocityarenotlikelytobethesam e,soanaxilfrictionalforcealm ost certainlyapearsbetwenthisrolerandthecylinderThefolwingtwocategoriescanbeclasifedtodiscustheno-com patibleaxilm otinofthecylinderacordingtoIhefrictionalforcesm agnitude:(I) Whentheaxilfrictionalforceserctedbyeachrolerandthecylinderareallesthanthem axim um axiltheactionofthecylinderaginstthefrictionalforcetheactionfthecylinderaginstherolersproduceselasticslidingTheaxilm otinbetwenaindivdualrolerandthecylinderiscordinatedbytheirelasticslidingwhentheaxilvelocityofthecylinderisconstant,thealgebraicsum ofcylindersaxilforceserctedbyfourrolersshouldbezeroifrheaxilcom pnet ofgravityisignored.i.e.andtherislitledifernceam ongst Nj,aginstthefourolers,sothattheycanbeaproxim atelyregardeasthesam e. Thus:acordingtotheabovetwoequations,theaxildriftingvelocityofthecylinderis.Wher0.25Tantrepresntstheintrinsicatributesofthewelding.Otherbedundertheconditonthatonlythecylinderaginstalrolsproduceslasticslidingthism aybecaledthespiralrateofthecylinderspiralm otin(2)Whentheaxilfrictionalforceerctedbysom erolerandthecylinderisgreatrthanthem axim um axilfrictionalforce,frictionalslidingocursbetwenthecylinderandthisrolerThen.them axim um axilforceisactingonthebearingoftheroler,itsvaluebeingFfm ax=fFNfm axBecauseofthesitenceofthisfrictionalsliding.theAxialm otinbetwenaindivdualrolerandthecylinderisnotcordinatedbytheirelasticslidingNowtheaxilno-com patiblem otinofthecylinderisdetrm inedbytherelativerelationshipsbetwenthecylinderandthefourrolers.Itisdificulttowriteagenralcom patibleequationofthecylindersaxildriftingvelocitybecausethiskindofconditonisverycom plex. Thefolwingisfurtheranlysianddiscusionoftheproblem Atfirst,foreaseinanlyzingproblem , thespiralangleaverageisdefinedasandtherlativespiralngleasArange,1intheorderfrom bigtosm l andthenfrom posirvetonegative,expresdas(j).then1234Sim larly, thenorm al forcebetwenthecylinderandarolercanbeexpresdasN(j).andtheaxilforceasFjfjIngenral,theaxilm otinofthecylinderdetrm inedbythespiralangleaverageisdefinelasthecom patiblecom pnet oftheaxilm otin, isvelocitybeingTheaxilm otinofthecylinderdetrm inedbytherelativespiralanglejisdefinedastheno-com patiblecom pnet ofaxilm otin, itsvelocitybeingexpresdasVanAnalysi showsthatVaisdetrm inedbythequilbriumconditonthefouroleraxilforceshenthecylinderm ovesalongaxildirectionataconstantvelocity.whernottakingintoacountofthefunctionofgravitysaxilcom pnet.Suposingthatthecylinderm akesano-com patiblecom pnet ofaxilm otinwiththem axim um relativespiralangle(I).itsvelocityisThenthefouraxilforcescanotbeinequlibrium .ieF1-(F2+F3+F4)0Becausetherislitledifernceam ongst fournorm al forces,thefouraxilfarcesarealsodetrm inedbynorm al forceandthefrictionfactoranyaxilforceundoubtedlybeinglesthanthesum oftheotherthreforces.Otherwise,ifthecylinderm akesano-com patiblecom pnetofaxilm otinwiththem inim um relativespiralangle(4).itsvelocityis.Va”=Vc*tan(4)Sim larly. fouraxilforcescannotbeinequilbrium also,i.e.:F(l)+F(2)+F(3)J-F(4)0Therfore,thecylindercanonlybeaproxim atelyconsiderdasm akingano-com patiblecom pnet ofaxilm otinwiththesecondorthirdrelativespiralangle,i.e.:Inwhatevrcaseasexpresdabove.whenthecylinderm akeano-com patiblecom pnet ofaxilm otin, thetworolershavingagreatrvelocityaredrivngrolers,andtheothertworolershavingalesrvelocityareresitantrolers,theequilbrium conditonofaxilforcesbeingoperative,i.e.:F(1)+F(2)=F(3)+F(4)Acordingtotheanlysiabove,andbecauseoftheunstabiltyoffrictionfactorfthatisafectdbythefactorsofload,m aterial, conditonofthecontactsurface,andcirum stance, theno-com patiblecom pnet Vaoftheaxilvelocityofthecylinderisundefined.Whenthecylinderm akesano-com patibleaxilm otin, itsaxilvelocityiscom psedofacom patiblecom pnetVa0andano-com patiblecom pnetVani.eVa=a0+anaa0VanThem ost optim al adjustm ent oftheaxilm otinistom aketheno-com patiblecom pnet assm al asposibleacordingtothestabiltyofadjustm ent anddecraseinaxilforce.Nom aterwhetrthecylinderm akescom patibleorno-com patiblem otin, suposingthatthecylinderisideal,itsaxilvelocityisalwaysexistentanddefinableforaparticularbed,itsm agnitudeandirectionreflctingthebedsinherntproerty.3.Experim nt3.1.Descriphm ofexperm ntTheexperim ntal m odel ishowninFig5.Experim ntswerdonetostudytwofactors:thespiralangleandthecylinderscirularlinearvelocity,whicafecttheaxildriftingofthecylinder.Intheexperim ntigproces.theaxildisplacem nt SaandtheaxildriftingvelocityVaofthecylinderwerm easuredbythevaritionofthetwofactorsdescribedabove.Them easuringm ethodisshowniFig.5,andiscariedoutbym eansofbringi anxialdisplacem nt sensorintocontactwithoneendofthecylinder.withthesensorbeingconectdtoanX-Yrecordertorecordthecylindersaxildisplacem nt evry5s.LinearlyregresingtheplotSa-t(texpresstim e),theaveragedriftingvelocityVa,tevrydeflctinganglecanbecalulated.Beforeexperim ntig. theexperim ntal m odel isinitalisedasfolws:first.theheightofthefourrolersisadustedbym eansofalevltoputthecentrsofthefourrolersinthesam ehorizontalplane,andatthefourvertxesoftherectangle.thentherolersaredeflctedsothattherotaingcylinderisattherelativequilbrium positon.Then.thecylinderdoesnotdriftoveralongtim e.orperiodicalydriftoveraverysm al axilrange3.2experim ntresultsandiscusion3.2.1Efectofspiralngle(I)Fig.6showsthatchangeofVawiththevaritionofThetestingconditonis:positverotalion,Vc=35m /hL=42m m , =60”TheVa-tn 4curveshowsthatVaisdirectlyprortionaltotan 4when 4isrelativelysm al (16c).Theslopeofthelinebeing3.06m m /s, Vaisnolongerdireclyprortionaltotan 4when 4,isgreatrthan6CThecurveisanarchedcurve.i.e.withtheincrem nt of 4,.Va,increase.butwiththeincrem nt ofVagradualybecom ingsm alet Becauseonlyonedrivenroler(rolerNo.4)isdeflcted,i.e 4canbechangedwhilsttheothersrem ainzero,thecylinderm akesano-com patiblem otin.When 4isrelativelysm al, Vaissm al also.Theaxilfrictionalforcesbetwenthecylinderandrolersarelesthanthem axim um axilfrictionalforce,andthecylinderproducesanelasticslidingaginstrolers.Axialm otinbetweneachrolerandthecylinderiscordinatedbyelasticsliding.thusVais:inthetheoreticalcurve,theslopeKcanbecalulatedbythefolwingequation:K=3.06m m /s intheexperim ntal curve.Thus,intakingacountoftheexperim ntal tolerance,thetwoslopescanbeconsiderdtobeaproxim atelyequal.When 4isrelativelylarge,theaxilfrictionalforcesbetwenthecylinderandtherolersarelargerthanthem axim um axilfrictionalForce,andcylinderproducesfrictionalslidingaginsttherolersBecauseofIheexistenceofslidingfrictionalresitance.Vaisnolongerlincartyincreasedwiththeincrem nt oftan 4Withtheincrem nt oftan 4theincrem nt ofVa;withgradualybecom esm aler(2)Thefolwingthreexperim ntswerarngedtostudythecylindersno-com patibleaxilm otinfurther,deflctingpositvelyoneroler.tworolersandthrerolersbythesam espiralangletom easurethrecurvesbetwenSaandvTheexperim ntal resultsareshowninFig7.Withtheincrem nt inthenum berofdeflctedrolers,Vabecom esgreatr.ieVa3Va2Va1Whenthenum berofdrivenrolersdeflctedisvaried,thedegreofthecylindersno-com patibleaxilm otinwilbechanged.Withtheincrem nt ofthenum ber oflolersdeflctedbythesam espiralangle.thecom patiblecom pnet becom esgreatr,buttheno-com patiblecom pnet becom essm aler.Inotherwords,thecylindersaxilm otinwil betransform edfromnocom patiblem otintocom patiblem otin. Thus,Vabecom esgreatralso,ultim ately, beingequaltothecom patibleaxilvelocitydetrm inedbythespiralangle Now.thefourrolershavethesam espiralanyle .SothatVais:3.2.efctofcirularlinearvelocityDeflctingdrivenrolerNo4toaspiralangleof+2”from theequilbriumpositon,thecylinderwilsuferaxildrifting,Fig.8showstheVa-ccurve,whiclaterindicatesthatVaisdirectlyprortionaltoVc,theslopeofthecurvebeingaproxim ately0.708because 4=+2istosm al, thecylinderdoesnotm akefrictionalslidingaginsteachroler.Thus,therelativeaxilm otinbetwentherolerandthecylinderiscom pletlycordinatedbytheirelasticsliding,sothatVaisI. e.VaisdirectlyprortionaltoVeForthetheoreticalCurvetheslopeK*canbecalulatedbythefolwingequationK”=0.25tan 4=0.25tan2=0.873wherK=0.708m m /s intheexperim ntal curve.Thus,intakingacountoftheexperim ntal tolerance,thetwoslopescanbeconsiderdtobeaproxim atelyequal.导室.4Conclusions1.Becauseofthedeviationsduetom anufacturingandasem bling. thecylinderscentrallineandtherolersaxisarenotparlel.i.e,theyarenotinthesam eplane,andtherisaspiralangle atthcpointofcontactbetwenthecylinderandtherolerinthecirularlinearvelocitydirection.Theexistenceof isthebasicreasonfortheocurenceofaxildrifting. heefctofgravityincylindersaxildirectionisalsooneofreasonsfordrifting.2.Therelativeaxilm otinsbetwenanindivdualrole
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年美容师(初级)美容美发行业挑战鉴定试卷
- 2025年美甲师(中级)美甲图案设计与绘制考试试卷
- 宁阳职业中专数学试卷
- 内初班小升初数学试卷
- 纪委业务知识培训内容课件
- 纪伯伦友谊课件
- 青海文科数学试卷
- 2024年贵州师范大学招聘真题(行政管理岗)
- 浦江中考数学试卷
- 祁县小考数学试卷
- 2025年驾驶证资格考试科目一必刷题库及答案(共560题)
- 青岛科学四年级上册《风的形成》课件
- 2025年光伏发电安装合同模板
- 2025年交规考试宝典
- 家长外出务工委托亲戚照顾孩子全托合同协议书
- 华为SDBE领先模型:闭环战略管理的全面解析-2024-12-组织管理
- 2024版中式烧烤加盟经营合作协议书3篇
- 1例胃癌术后并发肠梗阻患者的疑难病例讨论
- 生物安全管理手册
- GB/T 11263-2024热轧H型钢和剖分T型钢
- 美团配送站长述职报告
评论
0/150
提交评论