




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
打造中国远程教育第一品牌!构建数学模型 解决实际问题湖北仙桃胡场二中 刘志伟“能够运用所学知识解决简单的实际问题”是九年义务教育数学教学大纲规定的初中数学教学目的之一。能够解决实际问题是学习数学知识、形成技能和发展能力的结果,也是对获得知识、技能和能力的检验。构建数学模型 解决实际问题基本程序如下:解题步骤如下:1、阅读、审题:要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。2、建模:将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。3、合理求解纯数学问题4、解释并回答实际问题中学阶段主要求解下面几类应用题,本文以2004年全国各地中考试题为例供同学们学习。一、 数与式模型例1、(2004台州)水是生命之源,水资源的不足严重制约我市的工业发展,解决缺水的根本在于节约用水,提高工业用水的重复利用率、降低每万元工业产值的用水量都是有力举措。据台州日报4月26日报导,目前,我市工业用水每天只能供应10万吨,重复利用率为45,先进地区为75,工业每万元产值平均用水25吨,而先进地区为10吨,可见我市节水空间还很大。(1) 若我市工业用水重复利用率(为方便,假设工业用水只重复利用一次)由目前的45增加到60,那么每天还可以增加多少吨工业用水?(2) 写出工业用水重复利用率由45增加到x(45x100),每天所增加的工业用水y(万吨)与之间的函数关系式。(3) 如果我市工业用水重复利用率及每万元工业产值平均用水量都达到先进地区水平,那么与现有水平比较,仅从用水的角度我市每天能增加多少万元工业产值? 解:(1)100000(1+60)100000(1+45)=10000015=15000(吨)答:每天还可以增加15000吨工业用水 (2) y=10(x45)=0.1x4.5(45x100) (3)(万元)答:每天能增加11700万元工业产值。二、方程模型例2、(2004陕西)足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分. 请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?解:(1)设这个球队胜x场,则平了(8-1-x)场.根据题意,得3x+(8-1-x)=17.解之,得x=5.答:前8场比赛中,这个球队共胜了5场.(2)打满14场比赛最高能得17+(14-8)3=35分.(3)由题意知,以后的6场比赛中,只要得分不低于12分即可.胜不少于4场,一定达到预期目标,而胜3场、平3场,正好达到预期目标.在以后的比赛中这个球队至要胜3场.例3、(2004南通)小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏。假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦0.5元。设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用灯的售价电费)小刚想在这两种灯中选购一盏:当照明时间是多少时,使用两种灯的费用一样多;试用特殊值推断:照明时间在什么范围内,选用白炽灯费用低;照明时间在什么范围内,选用节能灯费用低;小刚想在这两种灯中选购两盏假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由。解:(1)用一盏节能灯的费用是(49+0.0045x)元,用一盏白炽灯的费用是(18+0.02x)元 (2)由题意,得49+0.0045x=18+0.02x,解得x=2000,所以当照明时间是2000小时时,两种灯的费用一样多 取特殊值x=1500小时,则用一盏节能灯的费用是49+0.00451500=55.75(元),用一盏白炽灯的费用是18+0.021500=48(元),所以当照明时间小于2000小时时,选用白炽灯费用低;取特殊值x=2500小时,则用一盏节能灯的费用是49+0.00452500=60.25(元),用一盏白炽灯的费用是18+0.022500=68(元),所以当照明时间超过2000小时时,选用节能灯费用低 (3)分下列三种情况讨论:如果选用两盏节能灯,则费用是98+0.00453000=111.5元;如果选用两盏白炽灯,则费用是36+0.023000=96元;如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间大于2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低费用是67+0.00452800+0.02200=83.6元综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低例4、(2004 绍兴市)初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节” 期间的销售额.解:设去年A超市销售额为x万元,B 超市销售额为y万元,由题意得解得100(1+15%)=115(万元),50(1+10%)=55(万元).答:A,B两个超市今年“五一节” 期间的销售额分别为115万元,55万元.例5、(重庆市2004年)某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然汽的装置,每辆车改装价格为4000元。公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下末改装车辆每天燃料费用的。问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?解:(1)设公司第一次改装了辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降的百分数为依题意得方程组:化简得:解得:答:公司共改装了40辆车,改装后的每辆出租车每天的燃料费比改装前的燃料费下降了40%。(2)设一次性改装后,天可以收回成本,则:1008040%4000100解得:125(天)答:125天后就可以从节省的燃料费中收回成本。例6、(2004哈尔滨) “利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.解:(1)设甲种型号手机要购买x部,乙种型号手机购买y部,丙种型号手机购买z部,根据题意,得: 答:有两种购买方法:甲种手机购买30部,乙种手机购买10部;或甲种手机购买20部,乙种手机购买20部. (2)根据题意,得: 解得: 答:若甲种型号手机购买26部手,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部手,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部手,则乙种型号手机购买8部,丙种型号手机购买4部;例7、(2004万州)小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米/时? 解:设王老师的步行速度为x千米/时,则骑自行车速度为3x千米/时。 依题意得: 20分钟=小时 解得:x=5 经检验:x=5是所列方程的解3x=35=15 答:王老师的步行速度及骑自行车速度各为5千米/时 和15千米/时例8、(2004朝阳)某校初三(2)班的师生到距离10千米的山区植树,出发1个半小时后,张锦同学骑自行车从学校按原路追赶队伍,结果他们同时到达植树地点如果张锦同学骑车的速度比队伍步行的速度的2倍还多2千米(1)求骑车与步行的速度各是多少?(2)如果张锦同学要提前10分钟到达植树地点,那么他骑车的速度应比原速度快多少?解:(1)设步行的速度为x千米/时根据题意得解得,经检验,都是原方程的解,但不合题意,舍去当x4时,2x210答:队伍步行的速度是每小时4千米,张锦骑车的速度是每小时10千米(2)由(1)可得张锦骑车用时:(小时),若提前10分钟,即用时小时则骑车速度为:,12-102(千米/时)答:如果张锦提前10分钟到达,那么骑车速度应比原速度每小时快2千米三、不等式模型例9(2004湖州)年织里某童装加工企业今年五月份工人每天平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%。为了提高工人的劳动积极性,按时完成外贸订货任务,企业计划从六月份起进行工资改革。改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元。(1)为了保证所有工人的每月工资收入不低于市有关部门规范的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元(精确到分)?(2)根据经营情况,企业决定每加工1套童装奖励5元。工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?解:(1)设企业每套奖励x元由题意得:200+60%150x450解得:x2.78因此该企业至少应奖励2.78元(2)设小张在六月份加工y套由题意得:200+5y1200解得:y200答:小张在六月份应至少加工200套。例10、(2004南昌)仔细观察下图,认真阅读对话:小朋友,本来你用10元钱买一盒饼干是有多的,但要再买一袋牛奶就不够了!今天是儿童节,我给你买的饼干打9折,两样东西请拿好!还有找你的8角钱.阿姨,我买一盒饼干和一袋牛奶(递上10元钱).根据对话的内容,试求出饼干和牛奶的标价各是多少元?解:设饼干的标价为每盒x元,牛奶的标价为每袋y元,则x+y10,(1)0.9x+y=100.8, (2)x10,解得x8. 由(3)综合得 8x0且x是整数)当y=106000时,代入得:106000=19x-800019x=114000x=6000这个月该厂生产产品6000件.例13(2004四川)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.(I)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;(II)若要使车间每天所获利润不底于24,000元,你认为至少要派多少名工人去制造乙种零件才合适?解:(1)依题意,是(2)由题意:有 解得 答:至少要派15名工人去制造乙种零件才合适.五、几何模型例14(2004宁波)据气象台预报,一强台风的中心位于宁波(指城区,下同)东南方向()千米的海面上,目前台风中心正以20千米/时的速度向北偏西60的方向移动,距台风中心50千米的圆形区域均会受到强袭击已知宁海位于宁波正南方向72千米处,象山位于宁海北偏东60方向56千米处请问:宁波、宁海、象山是否会受这次台风的强袭击?如果会,请求出受强袭击的时间;如果不会,请说明理由(为解决问题,须画出示意图,现已画出其中一部分,请根据需要,把图形画完整)_(台风中心)_(宁海)_(宁波)_P_B_A解:补画出示意图经过点 如图过作东西方向(水平)直线与(南北)延长线交于, 延长台风中心移动射线与相交于 ,45, 30, 30=, 与重合, 台风中心必经过宁海经过宁海的时间为(时) 如图为象山,由题意可得30+30=60,到的距离60=,象山会受到此次台风强袭击求受袭击时间可先求以为圆心,为半径的圆与相交的弦长等于,受袭击时间(时) 到的距离60=,宁波不会遭受此次台风的强袭击综上所述:宁波不会遭受此次台风的强袭击;宁海:会,受袭击时间为5时;象山:会,受袭击时间时(约1时13分)例15(2004锦州)一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30方向航行10海里到达B处,在B处测得小岛C在北偏东60方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?解法一:过点B作BMAH于M,BMAF.ABM=BAF=30. 在BAM中,AM=AB=5,BM=5. 过点C作CNAH于N,交BD于K. 在RtBCK中,CBK=90-60=30 设CK=x,则BK=x. 在RtACN中,CAN=90-45=45, AN=NC.AM+MN=CK+KN. 又NM=BK,BM=KN. x+5=5+x.解得x=5. 5海里4.8海里,渔船没有进入养殖场的危险. 答:这艘渔船没有进入养殖场危险.解法二:过点C作CEBD,垂足为E,CEGBFA.BCE=GBC=60.ACE=FAC=45.BCA=BCE-ACE=60-45=15.又BAC=FAC-FAB=45-30=15,BCA=BAC.BC=AB=10在RtBCE中,CE=BCcosBCE=BCcos60=10=5(海里).5海里4.8海里,渔船没有进入养殖场的危险.答:这艘渔船没有进入养殖场的危险.六、三角模型例16(2004四川)如图,小丽的家住在成都市锦江河畔的电梯公寓AD内,她家的河对岸新建了一座大厦BC,为了测得大厦的高度,小丽在她家的楼底A处测得大厦顶部B的仰角为60,爬上楼顶D处测得大厦顶部B的仰角为30。已知小丽所住的电梯公寓高82米,请你帮助小丽计算出大厦高度BC及大厦与小丽所住电梯公寓间的距离AC.解:过点D作DEBC于E,则四边形ACED是矩形. AC=DE,DA=EC=82米,BDE=30.在RtBDE中,tanBDE= BE=DEtanBDE=DE.在RtBAC中,tanBAC=答:大夏BC高为123米,小丽所住的电梯公寓与大厦间的距离AC为41米七、统计模型例17(2004哈尔滨)中小学生的视力状况受到全社会的广泛关注,某市有关部门对全市4万名初中生的视力状况进行一次抽样调查统计,所得到的有关数据绘制成频率分布直方图,如下图,从左至右五个小组的频率之比依次是2:4:9:7:3,第五小组的频数是30.(1)本次调查共抽测了多少名学生?(2)本次调查抽测的数据的中位数应在哪个小组?说明理由.(3)如果视力在4.95.1(含4.9、5.1)均属正常,那么全市初中生视力正常的约有多少人?解:(1)因为频率之比等于频数之比,设第一小组的频数为2k,所以各组的频数依次为2k、4k、9k、7k、3k,于是3k=30,所以k=10所以2k=20,4k=40,9k=90,7k=70,所以20+40+90+70+30=250(人).答:本次调查共抽测了250名学生. (2)中位数应在第三小组. 250个数据的中位数是第125和第126两个数据的平均数,前两个小组的频数之和是20+40=60,60126,中位数应在第三小组. (3)视力在4.95.1范围内的人有70人,频率= =0.28,全市初中生视力正常的约有400000.28=11200(人),答:全市初中生视力正常的约有11200人.视力3.954.254.554.855.155.45例18、(2004河北)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三各年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)初一年级80 86 88 80 88 99 80 74 91 89 初二年级85 85 87 97 85 76 88 77 87 88初三年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:平均分众数中位数初一年级85.587初二年级85.585初三年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析: 从众数和平均数相结合看(分析哪个年级成绩好些); 从平均数和中位数相结合看(分析哪个年级成绩好些)。(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025学费支付合同(校内贷款)范文
- 基于2025年互联网医疗在线问诊患者教育模式创新
- 安保公司培训考试题及答案
- 2025年页面设计试卷及答案
- 农村一二三产业融合下的农产品品牌建设路径报告
- 教师招聘之《小学教师招聘》考试模拟试卷附完整答案详解【全优】
- 结算工程指标分析方案(3篇)
- 桩基工试卷及答案
- 2025年注塑组长的考试试题及答案
- 医疗美容服务行业2025规范化改革与市场监管政策实施效果分析
- 医师临床“三基”训练综合试卷(含答案)
- 2025至2030年中国综合能源服务市场竞争策略及行业投资潜力预测报告
- 土地要素保障课件教学
- 2025-2026粤教粤科版(2024)科学三年级上册教学设计(附目录)
- 《鸿蒙应用开发项目教程》全套教学课件
- 2025年陕西省中考数学试题卷(含答案详解)
- 2025年注册计量师考试计量器具管理与维护试卷
- 国内公司外汇管理办法
- 高中数学教师学情分析现状的调查研究
- 起重作业安全知识考核试题(含答案)
- 肿瘤化疗静脉护理
评论
0/150
提交评论