高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系课件 文.ppt_第1页
高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系课件 文.ppt_第2页
高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系课件 文.ppt_第3页
高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系课件 文.ppt_第4页
高三数学一轮复习 第九章 平面解析几何 第四节 直线与圆、圆与圆的位置关系课件 文.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

文数课标版 第四节直线与圆 圆与圆的位置关系 1 直线与圆的位置关系 1 三种位置关系 相交 相切 相离 2 两种研究方法 教材研读 2 圆与圆的位置关系设圆o1 x a1 2 y b1 2 r1 0 圆o2 x a2 2 y b2 2 r2 0 判断下列结论的正误 正确的打 错误的打 1 如果直线与圆的方程组成的方程组有且只有一组实数解 则直线与圆相切 2 如果两个圆的方程组成的方程组只有一组实数解 则两圆外切 3 如果两圆的圆心距小于两圆的半径之和 则两圆相交 1 直线x y 1 0与圆 x 1 2 y2 1的位置关系是 a 相切b 直线过圆心c 直线不过圆心 但与圆相交d 相离答案b依题意知圆心为 1 0 到直线x y 1 0的距离d 0 所以直线过圆心 2 圆o1 x2 y2 2x 0和圆o2 x2 y2 4y 0的位置关系是 a 外离b 相交c 外切d 内切 答案b圆o1 x 1 2 y2 1 圆o2 x2 y 2 2 22 o1o2 2 1 o1o2 2 1 两圆相交 故选b 3 在平面直角坐标系xoy中 直线3x 4y 5 0与圆x2 y2 4相交于a b两点 则弦ab的长为 a 3b 2c d 1 答案b圆心 0 0 到直线3x 4y 5 0的距离d 1 因为 22 12 3 所以 ab 2 4 若圆x2 y2 1与直线y kx 2没有公共点 则实数k的取值范围是 答案 解析依题意知 1 解得 k 5 若圆c1 x2 y2 1与圆c2 x2 y2 6x 8y m 0外切 则m 答案9解析圆c1的圆心c1 0 0 半径r1 1 圆c2的方程可化为 x 3 2 y 4 2 25 m 所以圆心c2 3 4 半径r2 从而 c1c2 5 由两圆外切得 c1c2 r1 r2 即1 5 解得m 9 考点一直线与圆的位置关系典例1 1 直线l mx y 1 m 0与圆c x2 y 1 2 5的位置关系是 a 相交b 相切c 相离d 不确定 考点突破 2 若直线x my 2 m与圆x2 y2 2x 2y 1 0相交 则实数m的取值范围为 a b 0 c 0 d 0 0 答案 1 a 2 d 解析 1 解法一 由消去y 整理得 1 m2 x2 2m2x m2 5 0 则 4m4 4 1 m2 m2 5 16m2 20 0 所以直线l与圆c相交 故选a 解法二 因为圆心 0 1 到直线l的距离d 1 故直线l与圆相交 选a 解法三 直线l mx y 1 m 0过定点 1 1 因为点 1 1 在圆c x2 y 1 2 5的内部 所以直线l与圆c相交 故选a 2 由x2 y2 2x 2y 1 0 得 x 1 2 y 1 2 1 因为直线x my 2 m与圆 x 1 2 y 1 2 1相交 1 m 0 故实数m的取值范围为 0 0 方法技巧 1 判断直线与圆的位置关系时 若两方程已知或圆心到直线的距离易表达 则用几何法 若方程中含有参数 或圆心到直线的距离的表达较烦琐 则用代数法 2 已知直线与圆的位置关系求参数的取值范围时 可根据数形结合思想利用直线与圆的位置关系的判断条件建立不等式解决 1 1已知点m a b 在圆o x2 y2 1外 则直线ax by 1与圆o的位置关系是 a 相切b 相交c 相离d 不确定答案b因为m a b 在圆o x2 y2 1外 所以a2 b2 1 而圆心o到直线ax by 1的距离d 1 故直线与圆o相交 1 2已知直线l y kx 1 圆c x 1 2 y 1 2 12 1 试证明 无论k为何实数 直线l和圆c总有两个交点 2 求直线l被圆c截得的最短弦长 解析 1 证明 由消去y 得 k2 1 x2 4k 2 x 7 0 因为 4k 2 2 28 k2 1 0 所以无论k为何实数 直线l和圆c总有两个交点 2 设直线与圆交于a x1 y1 b x2 y2 两点 则直线l被圆c截得的弦长 ab x1 x2 2 2 令t 则tk2 4k t 3 0 当t 0时 k 当t 0时 因为k r 所以 16 4t t 3 0 解得 1 t 4 且t 0 故t 的最大值为4 此时 ab 最小 为2 答案 1 d 2 4 解析 1 因为圆心 0 0 到直线ax by c 0的距离d 所以弦长的一半等于 所以弦长为 2 把圆c的方程化为x2 y a 2 2 a2 则圆心为 0 a 半径r 圆心到直线x y 2a 0的距离d 由r2 d2 得a2 2 3 解得a2 2 则r2 4 所以圆的面积s r2 4 方法技巧当直线与圆相交时 求弦长的方法如下 1 几何法 如图所示 设直线l被圆c截得的弦为ab 圆的半径为r 圆心到直线的距离为d 则有关系式 ab 2 2 代数法 若斜率为k的直线与圆相交于a xa ya b xb yb 两点 则 ab ya yb 其中k 0 特别地 当k 0时 ab xa xb 当斜率不存在时 ab ya yb 2 1 2016课标全国 15 5分 已知直线l x y 6 0与圆x2 y2 12交于a b两点 过a b分别作l的垂线与x轴交于c d两点 则 cd 答案4解析圆心 0 0 到直线x y 6 0的距离d 3 ab 2 2 过c作ce bd于e 因为直线l的倾斜角为30 所以 cd 4 2 2已知圆c过点 1 0 且圆心在x轴的正半轴上 直线l y x 1被圆c所截得的弦长为2 则过圆心且与直线l垂直的直线的方程为 答案x y 3 0解析由题意 设所求的直线方程为x y m 0 设圆心坐标为 a 0 则由题意知 2 a 1 2 解得a 3或a 1 又因为圆心在x轴的正半轴上 所以a 3 故圆心坐标为 3 0 因为圆心 3 0 在所求的直线上 所以3 0 m 0 即m 3 故所求的直线方程为x y 3 0 考点三圆的切线问题典例3已知点p 1 2 点m 3 1 圆c x 1 2 y 2 2 4 1 求过点p的圆c的切线方程 2 求过点m的圆c的切线方程 并求出切线长 解析由题意得圆心c 1 2 半径r 2 1 1 1 2 2 2 2 4 点p在圆c上 又kpc 1 切线的斜率k 1 过点p的圆c的切线方程是y 2 1 x 1 即x y 1 2 0 2 3 1 2 1 2 2 5 4 点m在圆c外部 当过点m的直线斜率不存在时 直线方程为x 3 即x 3 0 又点c 1 2 到直线x 3 0的距离d 3 1 2 r 即此时满足题意 所以直线x 3是圆的切线 当切线的斜率存在时 设切线方程为y 1 k x 3 即kx y 1 3k 0 则圆心c到切线的距离d r 2 解得k 切线方程为y 1 x 3 即3x 4y 5 0 综上可得 过点m的圆c的切线方程为x 3 0或3x 4y 5 0 mc 过点m的圆c的切线长为 1 1 求过圆上的一点 x0 y0 的切线方程 先求切点与圆心连线的斜率k 若k不存在 则结合图形可直接写出切线方程为y y0 若k 0 则结合图形可直接写出切线方程为x x0 若k存在且k 0 则由垂直关系知切线的斜率为 由点斜式可写出切线方程 方法指导 2 求过圆外一点 x0 y0 的圆的切线方程 1 几何法当斜率存在时 设为k 则切线方程为y y0 k x x0 即kx y y0 kx0 0 由圆心到直线的距离等于半径 即可求出k的值 进而写出切线方程 2 代数法当斜率存在时 设为k 则切线方程为y y0 k x x0 即y kx kx0 y0 代入圆的方程 得到一个关于x的一元二次方程 由 0求得k 切线方程即可求出 3 在求过一定点的圆的切线方程时 应先判断定点与圆的位置关系 若点在圆上 则该点为切点 切线只有一条 若点在圆外 切线有两条 若点在圆内 则切线不存在 3 1一条光线从点 2 3 射出 经y轴反射后与圆 x 3 2 y 2 2 1相切 则反射光线所在直线的斜率为 a 或 b 或 c 或 d 或 答案d点 2 3 关于y轴的对称点为 2 3 由题意 知反射光线所在直线一定过点 2 3 设反射光线所在直线的斜率为k 则反射光线所在直线的方程为y 3 k x 2 即kx y 2k 3 0 由反射光线与圆相切 则有 1 解得k 或k 3 2已知直线l x ay 1 0 a r 是圆c x2 y2 4x 2y 1 0的对称轴 过点a 4 a 作圆c的一条切线 切点为b 则 ab a 2b 4c 6d 2 答案c圆c的标准方程为 x 2 2 y 1 2 22 圆心为c 2 1 半径r 2 由直线l是圆c的对称轴 知直线l过点c 所以2 a 1 1 0 a 1 所以a 4 1 于是 ac 2 40 所以 ab 6 故选c 考点四圆与圆的位置关系典例4已知两圆c1 x2 y2 2x 6y 1 0和c2 x2 y2 10 x 12y 45 0 1 求证 圆c1和圆c2相交 2 求圆c1和圆c2的公共弦所在直线的方程和公共弦长 解析 1 证明 圆c1的圆心为c1 1 3 半径r1 圆c2的圆心为c2 5 6 半径r2 4 两圆圆心距d c1c2 5 r1 r2 4 r1 r2 4 r1 r2 d r1 r2 圆c1和圆c2相交 2 圆c1和圆c2的方程左 右分别相减 得4x 3y 23 0 两圆的公共弦所在直线的方程为4x 3y 23 0 圆心c2 5 6 到直线4x 3y 23 0的距离d 3 故公共弦长为2 2 3 两圆公共弦长的求法求两圆公共弦长 选其中一圆 在由弦心距 弦长的一半 半径构成的直角三角形中 利用勾股定理求解 4 1圆c1 x2 y2 2x 4y 1 0与圆c2 x2 y2 4x 4y 1 0的公切线有 a 1条b 2条c 3条d 4条 答案c圆c1 x2 y2 2x 4y 1 0化成标准方程为 x 1 2 y 2 2 4 圆心坐标为 1 2 半径为2 圆c2 x2 y2 4x 4y 1 0化成标准方程为 x 2 2 y 2 2 9 圆心坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论