全等三角形问题中常见的辅助线的作法.doc_第1页
全等三角形问题中常见的辅助线的作法.doc_第2页
全等三角形问题中常见的辅助线的作法.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全等三角形问题中常见的辅助线的作法姓名: 常见辅助线的作法有以下几种:1) 遇到过某条线段中点的线段AB,可以尝试倍长AB构造全等(SAS)。也是180度的旋转。2) 遇到一个图形内边相等角互补,可以尝试通过旋转构造全等(SAS)。3) 遇到角平分线,可以尝试以角平分线为对称轴构造全等(SAS或HL)。常要截长补短。一、倍长中线(线段)造全等1、已知,如图ABC中,AB=5,AC=3,则中线AD的取值范围是_.2、如图,ABC中,E、F分别在AB、AC上,DEDF,D是中点,试比较BE+CF与EF的大小.二、旋转1、 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求EAF的度数. 2、 D为等腰斜边AB的中点,DMDN,DM,DN分别交BC,CA于点E,F。(1) 当绕点D转动时,求证DE=DF。(2) 若AB=2,求四边形DECF的面积。三、角平分线1、如图,中,AB=2AC,AD平分,且AD=BD,求证:CDAC2、如图,ADBC,EA,EB分别平分CAB,DBA,CD过点E,求证;ABAD+BC3、如图,ABC中,AD平分BAC,DGBC且平分BC,DEAB于E,DFAC于F. (1)说明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的长.附加题:在等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系图1 图2 图3(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ; 此时 ; (II)如图2,点M、N边AB、AC上,且当DMDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明; (III) 如图3,当M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论