



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2010年数学二轮复习立体几何中探索性问题的向量解法 案例分析单位:蕲春四中 撰稿人:高三数学组高考中立体几何试题不断出现了一些具有探索性、开放性的试题。对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势. 本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。一、存在判断型例一:已知空间三点A(-2,0,2),B(-2,1,2),C(-3,0,3).设a=,b=,是否存在存在实数k,使向量ka+b与ka-2b互相垂直,若存在,求k的值;若不存在,说明理由。解ka+b=k(0,1,0)+(-1,0,1)(-1,k,1),ka-2b=(2,k,-2),且(ka+b)(ka-2b),(-1,k,1)(2,k,-2)=k2 -4=0.则k=-2或k=2.点拨:第(2)问在解答时也可以按运算律做.(ka+b)(ka-2b)=k2a2-kab-2b2= k2 -4=0,解得k=-2或k=2.例二: 如图,已知矩形ABCD,PA平面ABCD,M、N分别是AB、PC的中点,PDA为,能否确定,使直线MN是直线AB与PC的公垂线?若能确定,求出的值;若不能确定,说明理由.解:以点A为原点建立空间直角坐标系Axyz.设|AD|=2a,|AB|=2b,PDA=.则A(0,0,0)、B(0,2b,0)、C(2a,2b,0)、D(2a,0,0)、P(0,0,2atan)、M(0,b,0)、N(a,b,atan).=(0,2b,0),=(2a,2b,-2atan),=(a,0,atan).=(0,2b,0)(a,0,atan)=0,.即ABMN.若MNPC,则=(a,0,atan)(2a,2b,-2atan)=2a2-2a2tan2=0.tan2=1,而是锐角.tan=1,45.即当=45时,直线MN是直线AB与PC的公垂线.【方法归纳】对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在。这是一种最常用也是最基本的方法.二、位置探究型PDABCE例三:如图所示。PD垂直于正方形ABCD所在平面,AB=2,E是PB的中点,与夹角的余弦值为。(1)建立适当的空间坐标系,写出点E的坐标。(2)在平面PAD内是否存在一点F,使EF平面PCB?解析:以DA、DC、DP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,设P(0,0,2m).则A(2,0,0)、B(2,2,0)、C(0,2,0)、E(1,1,m),从而=(-1,1,m),=(0,0,2m).PDACEB=,得m=1.所以E点的坐标为(1,1,1).(2)由于点F在平面PAD内,故可设F(),由平面PCB得:且,B即。所以点F的坐标为(1,0,0),即点F是DA的中点时,可使EF平面PCB.【方法归纳】点F在平面PAD上一般可设、计算出后,D点是已知的,即可求出F点。例四:在棱长为a的正方体ABCDA1B1C1D1中,E、F分别是棱BC、CD上的点,且BECF(1)当E、F在何位置时,B1FD1E;(2)是否存在点E、F,使A1C面C1EF?(3)当E、F在何位置时三棱锥C1CEF的体积取得最大值,并求此时二面角C1EFC的大小解:(1)以A为原点,以为x轴、y轴、z轴建立空间直角坐标系,设BE=x,则有因此,无论E、F在何位置均有(2)若A1C面C1EF,则得矛盾,故不存在点E、F,使A1C面C1EF(3)当时,三棱锥C1CEF的体积最大,这时,E、F分别为BC、CD的中点。连接AC交EF于G,则ACEF,由三垂线定理知:C1GEF,【方法归纳】 立体几何中的点的位置的探求经常借助于空间向量,引入参数,综合已知和结论列出等式,解出参数. 这是立体几何中的点的位置的探求的常用方法.三、巩固提高例五:在正三棱柱ABCA1B1C1中,所有棱的长度都是2,M是BC边的中点,问:在侧棱CC1上是否存在点N,使得异面直线AB1和MN所成的角等于45?解:以A点为原点,建立如图9-6-5所示的空间右手直角坐标系Axyz.因为所有棱长都等于2,所以A(0,0,0),C(0,2,0),B(,1,0),B1(,1,2),M(,0).点N在侧棱CC1上,可设N(0,2,m)(0m2),则=(,1,2),=(,m),于是|=2,|=,=2m-1.如果异面直线AB1和MN所成的角等于45,那么向量和的夹角 是45或135,而cos=,所以=.解得m=-,这与0m2矛盾.即在侧棱CC1上不存在点N,使得异面直线AB1和MN所成的角等于45.例六:(湖南高考理)如图,在底面是菱形的四棱锥PABC中,ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.(I)证明PA平面ABCD;(II)求以AC为棱,EAC与DAC为面的二面角的大小;()在棱PC上是否存在一点F,使BF/平面AEC?证明你的结论.()证明 因为底面ABCD是菱形,ABC=60,所以AB=AD=AC=a, 在PAB中,由PA2+AB2=2a2=PB2 知PAAB.同理,PAAD,所以PA平面ABCD.()解 作EG/PA交AD于G,由PA平面ABCD.知EG平面ABCD.作GHAC于H,连结EH,则EHAC,EHG即为二面角的平面角.又PE : ED=2 : 1,所以从而 ()解法一 以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.由题设条件,相关各点的坐标分别为所以 设点F是棱PC上的点,则 令 得解得 即 时,亦即,F是PC的中点时,、共面.又 BF平面AEC,所以当F是棱PC的中点时,BF/平面AEC.解法二 当F是棱PC的中点时,BF/平面AEC,证明如下,证法一 取PE的中点M,连结FM,则FM/CE. 由 知E是MD的中点.连结BM、BD,设BDAC=O,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绘画培训服务平台创新创业项目商业计划书
- 移动广告预算智能分配创新创业项目商业计划书
- 外装修施工方案
- 隔音门施工方案
- 工厂安全知识车间培训课件
- 工厂安全培训知识祝语课件
- 护理个人简介模板
- 数字电路课件
- 甲状腺术后出血护理
- 护理核查制度
- 小学生课件藏文版下载
- 中试基地管理制度
- 2025至2030中国工业电机行业产业运行态势及投资规划深度研究报告
- 养老院电动车管理制度
- 2026届高考语文复习:辨析并修改病句
- 2025年区域卫生规划与医疗卫生资源优化配置的研究报告
- 养生馆转让协议书
- 南充市“十四五”现代物流产业发展规划
- 义务教育《艺术课程标准》2022年修订版(原版)
- 江苏省无锡市江阴市六校2024-2025学年高一下学期4月期中联考试题 物理 含答案
- 医保人员管理制度
评论
0/150
提交评论