已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 2 1二次函数y a x h 2图象和性质 1 二次函数y ax2 k的图象是什么 抛物线 2 二次函数的性质有哪些 请填写下表 向上 Y轴 0 0 最小值是0 Y随x的增大而减小 Y随x的增大而增大 向下 Y轴 0 0 最大值是0 Y随x的增大而增大 Y随x的增大而减小 向上 Y轴 0 k 最小值是k Y随x的增大而减小 Y随x的增大而增大 向下 Y轴 0 k 最大值是k Y随x的增大而增大 Y随x的增大而减小 知识回顾 画函数与的图象 2 在同一坐标系中作出二次函数y 3x2和y 3 x 1 2的图象 完成下表 并比较3x2和3 x 1 2的值 它们之间有什么关系 新知探究 讨论问题 1 函数y 3 x 1 2的图象与y 3x2的图象有什么关系 它是轴对称图形吗 它的对称轴和顶点坐标分别是什么 2 x取哪些值时 函数y 3 x 1 2的值随x值的增大而增大 x取哪些值时 函数y 3 x 1 2的值随x的增大而减少 图象是轴对称图形对称轴是平行于y轴的直线 x 1 顶点坐标是点 1 0 二次函数y 3 x 1 2与y 3x2的图象形状相同 可以看作是抛物线y 3x2整体沿x轴向右平移了1个单位 1 函数y 3 x 1 2的图象与y 3x2的图象有什么关系 它是轴对称图形吗 它的对称轴和顶点坐标分别是什么 二次项系数相同a 0 开口都向上 想一想 在同一坐标系中作二次函数y 3 x 1 2的图象 会在什么位置 在对称轴 直线 x 1 左侧 即x 1时 函数y 3 x 1 2的值随x的增大而减少 顶点是最低点 函数有最小值 当x 1时 最小值是0 二次函数y 3 x 1 2与y 3x2的增减性类似 2 x取哪些值时 函数y 3 x 1 2的值随x值的增大而增大 x取哪些值时 函数y 3 x 1 2的值随x的增大而减少 在对称轴 直线 x 1 左侧 即x 1时 函数y 3 x 1 2的值随x的增大而增大 想一想 在同一坐标系中作出二次函数y 3 x 1 2的图象 它的增减性会是什么样 例 在同一坐标系中作出二次函数y 3x2 y 3 x 1 2和y 3 x 1 2的图象 完成下表 并比较3x2 3 x 1 2和3 x 1 2的值 它们之间有什么关系 图象是轴对称图形 对称轴是平行于y轴的直线 x 1 顶点坐标是点 1 0 二次函数y 3 x 1 2与y 3x2的图象形状相同 可以看作是抛物线y 3x2整体沿x轴向左平移了1个单位 1 函数y 3 x 1 2的图象与y 3x2的图象有什么关系 它是轴对称图形吗 它的对称轴和顶点坐标分别是什么 二次项系数相同a 0 开口都向上 在对称轴 直线 x 1 左侧 即x 1时 函数y 3 x 1 2的值随x的增大而减少 顶点是最低点 函数有最小值 当x 1时 最小值是0 二次函数y 3 x 1 2与y 3x2的增减性类似 2 x取哪些值时 函数y 3 x 1 2的值随x值的增大而增大 x取哪些值时 函数y 3 x 1 2的值随x的增大而减少 在对称轴 直线 x 1 右侧 即x 1时 函数y 3 x 1 2的值随x的增大而增大 2 抛物线y 3 x 1 2和y 3 x 1 2在x轴的下方 除顶点外 它的开口向下 并且向下无限伸展 y 3 抛物线y 3 x 1 2在对称轴 x 1 的左侧 当x1时 y随着x的增大而减小 当x 1时 函数y的值最大 是0 抛物线y 3 x 1 2在对称轴 x 1 的左侧 当x 1时 y随着x的增大而减小 当x 1时 函数y的值最大 是0 二次函数y 3 x 1 2 y 3 x 1 2和y 3x2的图象 4 抛物线y 3 x 1 2可以看作是抛物线y 3x2沿x轴向右平移了1个单位 抛物线y 3 x 1 2可以看作是抛物线y 3x2沿x轴向左平移了1个单位 X 1 X 1 1 抛物线y 3 x 1 2的顶点是 1 0 对称轴是直线 x 1 抛物线y 3 x 1 2的顶点是 1 0 对称轴是直线 x 1 1 抛物线y a x h 2的顶点是 h 0 对称轴是平行于y轴的直线x h 3 当a 0时 在对称轴 x h 的左侧 y随着x的增大而减小 在对称轴 x h 右侧 y随着x的增大而增大 当x h时函数y的值最小 是0 当a 0时 在对称轴 x h 的左侧 y随着x的增大而增大 在对称轴 x h 的右侧 y随着x增大而减小 当x h时 函数y的值最大 是0 二次函数y a x h 2的性质 2 当a 0时 抛物线y a x h 2在x轴的上方 除顶点外 它的开口向上 并且向上无限伸展 当a 0时 抛物线y a x h 2在x轴的下方 除顶点外 它的开口向下 并且向下无限伸展 X h X h 4 二次函数y a x h 2与y ax2的图象形状相同 可以看作是抛物线y ax2整体沿x轴平移了个单位 当h 0时 向右移个单位 当h 0时 向左移个单位 得到的 探究 解 先列表 描点 画出二次函数 的图像 并考虑它们的开口方向 对称轴和顶点 2 0 0 5 2 0 5 8 4 5 8 2 0 5 0 4 5 2 0 5 x 1 讨论 抛物线与的开口方向 对称轴 顶点 2 抛物线有什么关系 以及增减性是怎么变化的 抛物线与抛物线有什么关系 向左平移1个单位 讨论 向右平移1个单位 即 在对称轴左侧递增在对称轴右侧递减 二次函数y a x h 2的性质 顶点坐标与对称轴 位置与开口方向 增减性与最值 抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值 y a x h 2 a 0 y a x h 2 a 0 h 0 h 0 直线x h 直线x h 在x轴的上方 除顶点外 在x轴的下方 除顶点外 向上 向下 当x h时 最小值为0 当x h时 最大值为0 在对称轴的左侧 y随着x的增大而减小 在对称轴的右侧 y随着x的增大而增大 在对称轴的左侧 y随着x的增大而增大 在对称轴的右侧 y随着x的增大而减小 根据图形填表 比一比 向上 直线x h h 0 Y随x的增大而减小 最小值是0 Y随x的增大而增大 向下 直线x h h 0 最大值是0 Y随x的增大而增大 Y随x的增大而减小 知识梳理 比一比 说出下列二次函数的开口方向 对称轴及顶点坐标 1 y 2 x 3 2 2 y 3 x 1 2 3 y 5 x 2 2 4 y x 6 2 5 y 7 x 8 2 向上 x 3 3 0 向下 x 1 1 0 向上 x 2 2 0 向下 x 6 6 0 向上 x 8 8 0 1 二次函数y 2 x 5 2的图像是 开口 对称轴是 当x 时 y有最值 是 2 二次函数y 3 x 4 2的图像是由抛物线y 3x2向平移个单位得到的 开口 对称轴是 当x 时 y有最值 是 抛物线 向上 直线x 5 5 小 0 右 4 向下 直线x 4 4 大 0 3 将二次函数y 2x2的图像向右平移3个单位后得到函数的图像 其对称轴是 顶点是 当x时 y随x的增大而增大 当x时 y随x的增大而减小 4 将二次函数y 3 x 2 2的图像向左平移3个单位后得到函数的图像 其顶点坐标是 对称轴是 当x 时 y有最值 是 y 2 x 3 2 直线x 3 3 0 3 3 y 3 x 1 2 1 0 直线x 1 1 大 0 随堂练习 5 将函数y 3 x 4 2的图象沿x轴对折后得到的函数解析式是 将函数y 3 x 4 2的图象沿y轴对折后得到的函数解析式是 y 3 x 4 2 y 3 x 4 2 6 把抛物线y a x 4 2向左平移6个单位后得到抛物线y 3 x h 2的图象 则a h 若抛物线y a x 4 2的顶点A 且与y轴交于点B 抛物线y 3 x h 2的顶点是M 则S MAB 3 2 144 7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年滨州科技职业学院单招职业适应性考试题库新版
- 2026年河北软件职业技术学院单招职业技能测试必刷测试卷带答案
- 2026年江西省南昌市单招职业适应性测试题库含答案
- 2026年怀化师范高等专科学校单招综合素质考试题库汇编
- 2026年昆明卫生职业学院单招职业适应性测试题库汇编
- 2026年惠州卫生职业技术学院单招职业适应性测试题库新版
- 2026年江西科技职业学院单招职业倾向性测试题库带答案
- 2025年下半年全国教师资格证考试中学《综合素质》真题及答案
- 2025年下半年教师资格证考试幼儿园科目二保教知识与能力真题及答案
- 2026年河北劳动关系职业学院单招职业技能考试题库带答案
- 地铁车站设施与服务优化策略
- 文化创业街区创意
- 智能化安防设备工程施工与调试(微课版) 课件 第3章 视频监控系统设备安装与调试
- 医疗数据安全:技术架构与安全策略设计
- 新《金融机构客户尽职调查和客户身份资料及交易记录保存管理办法》解读课件
- 高中语文《芣苢》《插秧歌》课件+统编版高一语文必修上册
- 档案安全责任制度
- 中西医结合治疗类风湿关节炎疼痛
- 2025国际胰腺病学会急性胰腺炎修订指南解读课件
- 2025年微信社交生态系统发展与商业模式研究报告及未来发展趋势
- 雨课堂学堂云在线《中国马克思主义与当代(北京化工大学 )》单元测试考核答案
评论
0/150
提交评论