




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
方法四 分离(常数)参数法分离(常数)参数法是高中数学中比较常见的数学思想方法,求参数的范围常常与分类讨论、方程的根与零点等基本思想方法相联系,其中与二次函数相关的充分体现数形结合及分类思想方法的题目最为常见.与二次函数有关的求解参数的题目, 相当一部分题目都可以避开二次函数,使用分离变量,使得做题的正确率大大提高,随着分离变量的广泛使用,越来越多的压轴题都需要使用该思想方法.1 分离常数法分离常数法在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求变量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出变量的取值范围.1.1 用分离常数法求分式函数的最值(值域)分离常数法是研究分式函数的一种代数变形的常用方法,主要的分式函数有, 等,解题的关键是通过恒等变形从分式函数中分离出常数.例1. 已知函数(且)是定义在上的奇函数.()求的值;()求函数的值域;()当时, 恒成立,求实数的取值范围.【答案】() ;() ;() .【解析】试题分析:()由函数为奇函数可得,即,可得()分离常数可得,故函数为增函数,再由,可得,即可得函数的值域()通过分离参数可得在时恒成立,令,则有,根据函数的单调性可得函数的最大值,从而可得实数的取值范围 ()由()可得,函数在上单调递增,又,函数的值域为()当时, 由题意得在时恒成立,在时恒成立令,则有,当时函数为增函数,.故实数的取值范围为例2.一种作图工具如图1所示是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且,当栓子在滑槽AB内作往复运动时,带动绕转动一周(不动时,也不动),处的笔尖画出的曲线记为以为原点,所在的直线为轴建立如图2所示的平面直角坐标系()求曲线C的方程;()设动直线与两定直线和分别交于两点若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由 xDOMNy第21题图2第21题图1 【答案】();()存在最小值8.【解析】()设点,依题意,且,所以,且即且 由于当点不动时,点也不动,所以不恒等于0,于是,故,代入,可得,即所求的曲线的方程为 又由 可得;同理可得.由原点到直线的距离为和,可得. 将代入得,. 当时,;当时,.因,则,所以,当且仅当时取等号.所以当时,的最小值为8.综合(1)(2)可知,当直线与椭圆在四个顶点处相切时,的面积取得最小值8. 1.2 用分离常数法判断分式函数的单调性例3.已知函数,判断函数的单调性.【答案】当时,函数在和上是减函数;当时,函数在和上是增函数.【解析】由已知有,当时,函数在和上是减函数;当时,函数在和上是增函数.例4.【2018届高三训练】若不等式x2ax10对一切x恒成立,则a的最小值为()A. 0 B. 2 C. D. 3【答案】C2 分离参数法分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题.2.1 用分离参数法解决不等式恒成立问题例5.【2018届天一大联考高中毕业班阶段性测试(四)】已知等差数列的通项公式为,前项和为,若不等式恒成立,则的最小值为_【答案】【解析】由题可知: 恒成立,即恒成立,设t=n+1,则,因为函数在, ,所以,所以M的最小值是例6.已知数列的前项和为,且(1)求数列的通项公式;(2)设,求使对任意恒成立的实数的取值范围【答案】(1);(2).【解析】(1)因为,所以所以当时,又,满足上式,所以数列的通项公式(2)由对任意恒成立,即使对恒成立设,则当或时,取得最小值为,所以.2.2 求定点的坐标例7. 已知直线:,求证:直线恒过定点.【答案】.【反思提升】综合上面的例题,我们可以看到,分离参(常)数是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年房地产市场调控政策对房地产中介服务的影响分析报告
- 2025年文化馆文化资源共享工作面试模拟题及答案
- 护理竞赛考试题库及答案
- 技术实验3 探究网络连接与数据传输教学设计-2025-2026学年初中信息科技泰山版2024七年级上册-泰山版2024
- 2025年安全培训题库及答案资源
- 云南省临沧市临翔区元江民族中学2025-2026学年高三生物第一学期期末监测模拟试题
- 2025年江西省名师联盟生物高三第一学期期末复习检测模拟试题
- 绿色物流配送服务在物流园区建设中的环保物流技术应用前景2025年计划书
- 2025年地震科普知识有奖问答题库及答案
- 2025年高级测绘员面试模拟题及答案解析
- 向量数量积说课课件-2023-2024学年高一下学期数学人教A版(2019)必修第二册
- 血液透析护理质量指标评价标准
- TCAWAORG 014-2024 老年综合评估及干预技术应用规范
- 《中国园林艺术文化》课件
- 汽车配件营销与管理
- 《红楼梦》(解析版)
- 2025年医院急诊科工作计划
- 人教版八年级物理上册《第四章光现象》单元测试卷(带答案)
- 学校购买文具用品的供货合同2025年
- 工程项目全过程造价管理课件
- 物业保安各岗位培训
评论
0/150
提交评论