




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第6节曲线与方程 知识链条完善 考点专项突破 解题规范夯实 知识链条完善把散落的知识连起来 教材导读 1 f x0 y0 0是点p x0 y0 在曲线f x y 0上的充要条件吗 提示 是 如果曲线c的方程是f x y 0 则曲线c的点的坐标满足f x y 0 以f x y 0的解为坐标的点也都在曲线c上 故f x0 y0 0是点p x0 y0 在曲线f x y 0上的充要条件 提示 不是同一曲线 知识梳理 1 曲线与方程一般地 在直角坐标系中 如果某曲线c 看作点的集合或适合某种条件的点的轨迹 上的点与一个二元方程f x y 0的实数解建立了如下的关系 1 曲线上点的都是这个方程的 2 以这个方程的为坐标的点都是曲线上的点 那么 这个方程叫做 这条曲线叫做 2 求动点轨迹方程的一般步骤 1 建立坐标系 用 x y 表示曲线上任意一点m的坐标 2 写出适合条件p的点m的集合p m p m 3 用坐标表示条件p m 列出方程f x y 0 并化简 4 查漏补缺 坐标 解 解 曲线的方程 方程的曲线 3 求动点轨迹方程的常用方法 1 直接法 也叫直译法 即根据题目条件 写出关于动点的几何关系并用坐标表示 再进行整理 化简 2 定义法 先根据已知条件判断动点的轨迹形状 然后根据曲线的定义直接求动点的轨迹方程 3 代入法 也叫相关点法 其特点是 动点m x y 与已知曲线c上的点 x y 相关联 可先用x y表示x y 再代入曲线c的方程 即得点m的轨迹方程 4 参数法 选取适当的参数 分别用参数表示动点坐标 x y 消去参数 即得其普通方程 重要结论 1 如果曲线c的方程是f x y 0 那么点p0 x0 y0 在曲线c上的充要条件是f x0 y0 0 2 曲线c是方程f x y 0的曲线 是 曲线c上的点的坐标都是方程f x y 0的解 的充分不必要条件 3 两条曲线有交点的充要条件是两条曲线的方程所组成的方程组有实数解 夯基自测 a c a 答案 y2 8x x 0 解析 设m x y 则p 2x 2y 代入双曲线方程得x2 4y2 1 答案 x2 4y2 1 考点专项突破在讲练中理解知识 考点一 定义法求轨迹方程 反思归纳定义法求轨迹方程 1 在利用圆锥曲线的定义求轨迹方程时 若所求的轨迹符合某种圆锥曲线的定义 则根据曲线的方程 写出所求的轨迹方程 2 利用定义法求轨迹方程时 还要看轨迹是否是完整的圆 椭圆 双曲线 抛物线 如果不是完整的曲线 则应对其中的变量x或y进行限制 答案 1 y2 4x 考点二 直接法求轨迹方程 2 当 op om 时 求l的方程及 pom的面积 反思归纳 直接法求轨迹方程的常见类型及解题策略 1 题目给出等量关系 求轨迹方程 可直接代入即可得出方程 2 题中未明确给出等量关系 求轨迹方程 可利用已知条件寻找等量关系 得出方程 答案 1 a 2 已知动点p x y 与两定点m 1 0 n 1 0 连线的斜率之积等于常数 0 则动点p的轨迹c的方程为 相关点 代入 法求轨迹方程 考点三 反思归纳 相关点求轨迹方程的一般步骤 1 设点 设动点坐标为 x y 已知轨迹的点的坐标为 x1 y1 3 代换 将上式关系代入已知曲线方程 便可得到所求动点的轨迹 备选例题 例4 已知抛物线y2 4px p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入职银行资料员培训课件
- 信息技术 wps版 教学大纲
- 河南省灵宝市2024-2025学年小学毕业考试语文试题(有答案)
- 佩戴口罩的重要性
- 邮政内部作案管理办法
- 造价部部门管理办法
- 企业消防安全生产培训课件
- 纽约枪支管制管理办法
- 2025年泌尿外科手术器械使用模拟考试答案及解析
- 外国学者谈新质生产力
- 重庆中医药学院2025年第二季度考核招聘工作人员笔试备考题库及答案详解一套
- 资阳市安岳县县属国有企业招聘(33人)考前自测高频考点模拟试题附答案详解
- 2025北京平谷区初三二模数学试题及答案
- 边境巡逻无人机2025市场细分与增长潜力分析
- 《非线性动力学》课程教学大纲
- 生态农庄设计规划课件
- 《工程制图完整》课件
- 互换性与测量技术基础总复习题与答案
- 北京工业地产工业园区调研报告
- 脑室和脑池解剖
- 英国文学各个时期介绍超全
评论
0/150
提交评论