高中数学 第一章 集合与函数 1.2.8 二次函数的图象和性质——对称性课件 湘教版必修1.ppt_第1页
高中数学 第一章 集合与函数 1.2.8 二次函数的图象和性质——对称性课件 湘教版必修1.ppt_第2页
高中数学 第一章 集合与函数 1.2.8 二次函数的图象和性质——对称性课件 湘教版必修1.ppt_第3页
高中数学 第一章 集合与函数 1.2.8 二次函数的图象和性质——对称性课件 湘教版必修1.ppt_第4页
高中数学 第一章 集合与函数 1.2.8 二次函数的图象和性质——对称性课件 湘教版必修1.ppt_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1章 集合与函数 1 2函数的概念和性质1 2 8二次函数的图象和性质 对称性 学习目标 1 能说出奇函数和偶函数的定义 2 会判断具体函数的奇偶性 3 会分析二次函数图象的对称性 4 能求一个二次函数在闭区间上的最值 1 预习导学挑战自我 点点落实 2 课堂讲义重点难点 个个击破 3 当堂检测当堂训练 体验成功 知识链接 函数y x的图象关于对称 y x2的图象关于 对称 原点 y轴 预习导引 1 函数的奇偶性 1 如果对一切使f x 有定义的x 也有定义 并且成立 则称f x 为偶函数 2 如果对一切使f x 有定义的x 也有定义 并且成立 则称f x 为奇函数 f x f x f x f x f x f x 2 二次函数图象的对称性 2 如果函数f x 对任意的h都有 那么f x 的图象关于直线x s对称 f s h f s h 要点一函数奇偶性的判断例1判断下列函数的奇偶性 1 f x x3 x 解函数定义域为r 且f x x 3 x x3 x x3 x f x 所以该函数是奇函数 2 f x x 2 x 2 解函数定义域为r 且f x x 2 x 2 x 2 x 2 f x 所以该函数是偶函数 解函数定义域是 x x 0 不关于原点对称 因此它是非奇非偶函数 解函数定义域是 x x 1 不关于原点对称 因此它是非奇非偶函数 解得x 2 即函数的定义域是 2 2 这时f x 0 所以f x f x f x f x 因此该函数既是奇函数又是偶函数 规律方法1 判断函数的奇偶性 一般有以下几种方法 1 定义法 若函数定义域不关于原点对称 则函数为非奇非偶函数 若函数定义域关于原点对称 则应进一步判断f x 是否等于 f x 或判断f x f x 是否等于0 从而确定奇偶性 注意当解析式中含有参数时 要对参数进行分类讨论后再进行奇偶性的判定 2 图象法 若函数图象关于原点对称 则函数为奇函数 若函数图象关于y轴对称 则函数为偶函数 3 还有如下性质可判定函数奇偶性 偶函数的和 差 积 商 分母不为零 仍为偶函数 奇函数的和 差仍为奇函数 奇 偶 数个奇函数的积 商 分母不为零 为奇 偶 函数 一个奇函数与一个偶函数的积为奇函数 注 利用以上结论时要注意各函数的定义域 2 判断函数奇偶性前 不宜盲目化简函数解析式 若必须化简 要在定义域的限制之下进行 否则很容易影响判断 得到错误结果 跟踪演练1判断下列函数的奇偶性 解函数定义域为r 故该函数是奇函数 解函数定义域为 x x 1 关于原点对称 故f x 是偶函数 解函数定义域是 x x 1 不关于原点对称 所以是非奇非偶函数 要点二函数奇偶性的简单应用例2 1 设f x 是定义在r上的奇函数 当x 0时 f x 2x2 x 则f 1 等于 a 3b 1c 1d 3解析因为当x 0时 f x 2x2 x 所以f 1 2 1 2 1 3 又f x 是奇函数 所以f 1 f 1 3 选a a 2 若函数f x x3 3x a是奇函数 则实数a 解析方法一因为f x 是奇函数 所以f x f x 对任意x r都成立 即 x3 3x a x3 3x a对任意x r都成立 所以a 0 方法二因为f x 是奇函数且在x 0处有定义 必有f 0 0 即03 3 0 a 0 解得a 0 0 规律方法1 利用奇偶性求值时 主要根据f x 与f x 的关系将未知转化为已知求解 若需要借助解析式求值 代入自变量值时 该自变量值必须在该解析式对应的区间上 否则不能代入求值 而应转化 2 已知函数是奇函数或偶函数 求解析式中参数值时 通常有两种方法 一是利用奇 偶函数的定义建立关于参数的方程求解 二是采用特殊值法 尤其是在x 0处有定义的奇函数 还可根据f 0 0求解 跟踪演练2 1 已知f x 是偶函数 且f 4 5 那么f 4 f 4 的值为 a 5b 10c 8d 不确定解析 f x 是偶函数 f 4 f 4 f 4 f 4 2f 4 2 5 10 b 2 若函数y x 1 x a 为偶函数 则a等于 a 2b 1c 1d 2解析 f x 是偶函数 f x f x 对任意x r都成立 即 x 1 x a x 1 x a 整理得2 a 1 x 0 x r 必有a 1 0 即a 1 c 要点三二次函数的区间最值问题例3已知函数f x x2 2ax 2 x 5 5 用a表示出函数f x 在区间 5 5 上的最值 解函数f x x2 2ax 2 x a 2 2 a2的图象开口向上 对称轴为x a 当 a 5 即a 5时 函数在区间 5 5 上递增 所以f x max f 5 27 10a f x min f 5 27 10a 当 5 a 0 即0 a 5时 函数图象如图 1 所示 由图象可得f x min f a 2 a2 f x max f 5 27 10a 当0 a 5 即 5 a 0时 函数图象如图 2 所示 由图象可得f x max f 5 27 10a f x min f a 2 a2 当 a 5 即a 5时 函数在区间 5 5 上递减 所以f x min f 5 27 10a f x max f 5 27 10a 规律方法1 对于定义域为r的二次函数 其最值和值域可通过配方法求解 2 若求二次函数在某闭 或开 区间 非r 内的最值或值域 则以对称轴是否在该区间内为依据分类讨论 1 若对称轴不在所求区间内 则可根据单调性求值域 2 若对称轴在所求区间内 则最大值和最小值可在区间的两个端点处或对称轴处取得 比较三个数所对应函数值的大小即可求出值域 跟踪演练3求函数f x x2 mx 6 m 0 在区间 0 2 上的最大值 1 2 3 4 1 下列函数为奇函数的是 a y x b y 3 xc y d y x2 4 解析a项和d项中的函数为偶函数 b项中的函数是非奇非偶函数 选c c 5 1 2 3 4 2 对于定义在r上的函数f x 给出下列判断 1 若f 2 f 2 则函数f x 是偶函数 2 若f 2 f 2 则函数f x 不是偶函数 3 若f 2 f 2 则函数f x 不是奇函数 其中正确的判断的个数是 a 0b 1c 2d 3 5 1 2 3 4 解析 1 仅有f 2 f 2 不足以确定函数的奇偶性 不满足奇函数 偶函数定义中的 任意 故 1 错误 2 当f 2 f 2 时 该函数就一定不是偶函数 故 2 正确 3 若f 2 f 2 则不能确定函数f x 不是奇函数 如若f x 0 x r 则f 2 f 2 但函数f x 0 x r既是奇函数又是偶函数 故 3 错误 答案b 5 1 2 3 4 a 是奇函数b 既是奇函数又是偶函数c 是偶函数d 是非奇非偶函数解析函数定义域是 x x 1 不关于原点对称 是非奇非偶函数 选d d 5 1 2 3 4 5 1 2 3 4 故选c 答案c 5 1 2 3 5 4 5 如果定义在区间 3 a 5 上的函数f x 为偶函数 那么a 解析 f x 为区间 3 a 5 上的偶函数 区间 3 a 5 关于坐标原点对称 3 a 5 即a 8 8 课堂小结1 在奇函数与偶函数的定义域中 都要求x d x d 这就是说 一个函数不论是奇函数还是偶函数 它的定义域都一定关于坐标原点对称 如果一个函数的定义域关于坐标原点不对称 那么这个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论