



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十九课时 指数函数(4)【学习导航】学习要求:1、巩固指数函数的图象及其性质;2、掌握由指数函数和其他简单函数组成的复合函数性质;【精典范例】一、 复合函数的定义域与值域例1、求下列函数的定义域与值域。(1)y=;(2)y=;(3)y=思维分析:y=a的定义域是f(x)的定义域;对于值域,要先求出f(x) 值域再利用指数函数单调性求解。【解】:(1)令,得。解得x1,或x1。故定义域为xx1,或x0,且a1),根据图象判断f(x1)+f(x2)与f()的大小,并加以证明。【解】:由a1及0a0即f(x1)+f(x2) f()。四、分类讨论思想在解题中的应用例4、已知f(x)=(exa)+ (exa)(a0)。(1) f(x)将表示成u= 的函数;(2) 求f(x)的最小值思维分析:平方展开重新配方,就可以得到所求函数的形式;然后根据二次函数的知识确定最值。【解】:(1)将f(x) 展开重新配方得,f(x)=(ex+ex)2a(ex+ex)+2a2令u= ,得f(x)=4u4au+2 a2(u)(2)因为f(u)的对称轴是u=,又a所以当时,则当u=1时,f(u)有最小值,此时f(u) =f(1)=2(a1)。 当a2时,则当u=时,f(u)有最小值,此时f(u)=f ()=a2.所以f(x)的最小值为f(x)=点评:这是复合函数求最值问题,为了求得最值,通过换元转化为二次函数,再由二次函数在区间上的单调性确定最值。追踪训练1、求下列函数定义域和值域.(1)y=;(2)y= 答案:(1)定义域-1,2; ,1。(2)定义域xx-1 值域yy2,或0y0,且a)(1)求f(x)的定义域和值域;(2)判断f(x)与的关系;(3)讨论f(x)的单调性;答案:(1)定义域为R,值域为(-1,1) (2)f(x) = f(x) (3)当a1时,f(x)=在定义域上为增函数;当0a0),而f(x)是定义在(,0)(0,+)上的奇函数,且当x0时,f(x)=g(x),则f(x)的解析式为_ _.答案:f(x)_=5、设a是实数,f(x)=.(1)证明:不论a为何实数,f(x)均为增函数;(2)试确定a的值,使f(x)为奇函数成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 激光治疗眼科近视设备创新创业项目商业计划书
- 移动摄影器材与配件商城创新创业项目商业计划书
- 渔业资源增殖放流创新创业项目商业计划书
- 电脑系统服务创新创业项目商业计划书
- 智能音箱内容服务创新创业项目商业计划书
- 自动化生产线控制系统创新创业项目商业计划书
- 2025年教育游戏化在环境教育中的知识传播与行为引导策略
- 2025年电商售后服务客户满意度提升与忠诚度培养策略报告
- 2025年社交媒体平台文化价值观传播与舆论引导研究报告
- 2025年新能源汽车市场拓展-氢燃料电池汽车加氢站成本预测与布局策略实施报告
- 2025至2030中国课外辅导行业发展研究与产业战略规划分析评估报告
- 一年级书法教学设计方案
- 小朋友个人卫生课件
- 校园食堂安全知识培训课件
- 抗洪抢险课件讲稿
- 2025年视觉传达设计师职业能力考试试题及答案解析
- 2025年公务员考试时事政治试卷(考点梳理)附答案详解
- 2025年法检系统书记员招聘考试(书记员知识+综合知识+行测+申论)历年参考题库含答案详解(5套)
- 饮料厂合作合同协议书模板
- 抵押贷款评估方案(3篇)
- 甘肃教辅管理办法
评论
0/150
提交评论