上海浦东新区2025年高二数学第一学期期末联考试题含解析_第1页
上海浦东新区2025年高二数学第一学期期末联考试题含解析_第2页
上海浦东新区2025年高二数学第一学期期末联考试题含解析_第3页
上海浦东新区2025年高二数学第一学期期末联考试题含解析_第4页
上海浦东新区2025年高二数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海浦东新区2025年高二数学第一学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的离心率为,则()A. B.C. D.2.已知等差数列满足,则等于()A. B.C. D.3.在空间直角坐标系下,点关于平面的对称点的坐标为()A. B.C. D.4.若构成空间的一个基底,则下列向量能构成空间的一个基底的是()A.,, B.,,C.,, D.,,5.直线与圆相切,则实数等于()A.或 B.或C.3或5 D.5或36.已知直线和平面,且在上,不在上,则下列判断错误的是()A.若,则存在无数条直线,使得B.若,则存在无数条直线,使得C.若存在无数条直线,使得,则D.若存在无数条直线,使得,则7.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则8.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形9.有一个圆锥形铅垂,其底面直径为10cm,母线长为15cm.P是铅垂底面圆周上一点,则关于下列命题:①铅垂的侧面积为150cm2;②一只蚂蚁从P点出发沿铅垂侧面爬行一周、最终又回到P点的最短路径的长度为cm.其中正确的判断是()A.①②都正确 B.①正确、②错误C.①错误、②正确10.今天是星期四,经过天后是星期()A.三 B.四C.五 D.六11.已知等差数列,若,,则()A.1 B.C. D.312.若圆的半径为,则实数()A. B.-1C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,的前项和为,则______.14.直线与直线间的距离为___________.15.直线l过抛物线的焦点F,且l与该抛物线交于不同的两点,.若,则弦AB的长是____16.若直线与直线平行,且原点到直线的距离为,则直线的方程为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,是边长为2的等边三角形,,O是BC的中点,(1)证明:平面平面BCD;(2)若三棱锥的体积为,E是棱AC上的一点,当时,二面角E-BD-C大小为60°,求t的值18.(12分)已知函数的图象在点处的切线与直线平行(是自然对数的底数).(1)求的值;(2)若在上恒成立,求实数的取值范围.19.(12分)某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识,组织方从参加活动的群众中随机抽取120名群众,按年龄将这120名群众分成5组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求图中m的值;(2)估算这120名群众的年龄的中位数(结果精确到0.1);(3)已知第1组群众中男性有2人,组织方要从第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率.20.(12分)已知函数.(1)讨论的单调性;(2)当时,求函数在内的零点个数.21.(12分)设,为双曲线:(,)的左、右顶点,直线过右焦点且与双曲线的右支交于,两点,当直线垂直于轴时,△为等腰直角三角形(1)求双曲线的离心率;(2)若双曲线左支上任意一点到右焦点点距离的最小值为3,①求双曲线方程;②已知直线,分别交直线于,两点,当直线倾斜角变化时,以为直径的圆是否过轴上的定点,若过定点,求出定点的坐标;若不过定点,请说明理由22.(10分)某话剧表演小组由名学生组成,若从这名学生中任意选取人,其中恰有名男生的概率是.(1)求该小组中男、女生各有多少人?(2)若这名学生站成一排照相留念,求所有排法中男生不相邻的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由离心率及椭圆参数关系可得,进而可得.【详解】因为,则,所以.故选:D2、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.3、C【解析】根据空间坐标系中点的对称关系求解【详解】点关于平面的对称点的坐标为,故选:C4、B【解析】由空间向量内容知,构成基底的三个向量不共面,对选项逐一分析【详解】对于A:,因此A不满足题意;对于B:根据题意知道,,不共面,而和显然位于向量和向量所成平面内,与向量不共面,因此B正确;对于C:,故C不满足题意;对于D:显然有,选项D不满足题意.故选:B5、C【解析】先求出圆的圆心和半径,再利用圆心到直线的距离等于半径列方程可求得结果【详解】由,得,则圆心为,半径为2,因为直线与圆相切,所以,得,解得或,故选:C6、D【解析】根据直线和直线,直线和平面的位置关系依次判断每一个选项得到答案.【详解】若,则平行于过的平面与的交线,当时,,则存在无数条直线,使得,A正确;若,垂直于平面中的所有直线,则存在无数条直线,使得,B正确;若存在无数条直线,使得,,,则,C正确;当时,存在无数条直线,使得,D错误.故选:D.7、C【解析】对于A、B、D均可能出现,而对于C是正确的8、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.9、C【解析】根据圆锥的侧面展开图为扇形,由扇形的面积公式计算即可判断①,在展开图中可知沿着爬行即为最短路径,计算即可判断②.【详解】直径为10cm,母线长为15cm.底面圆周长为.将其侧面展开后得到扇形半径为cm,弧长为,则扇形面积为,①错误.将其侧面展开,则爬行最短距离为,由弧长公式得展开后扇形弧度数为,作,,又,,cm,②正确.故选:C10、C【解析】求出二项式定理的通项公式,得到除以7余数是1,然后利用周期性进行计算即可【详解】解:一个星期的周期是7,则,即除以7余数是1,即今天是星期四,经过天后是星期五,故选:11、C【解析】利用等差数列的通项公式进行求解.【详解】设等差数列的公差为,因为,,所以,解得.故选:C.12、B【解析】将圆的方程化为标准方程,即可求出半径的表达式,从而可求出的值.【详解】由题意,圆的方程可化为,所以半径为,解得.故选:B.【点睛】本题考查圆的方程,考查学生的计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析出当为正奇数时,,可求得的值,再分析出当为正偶数时,,可求得的值,进而可求得的值.【详解】由题知,当为正奇数时,,于是,,,,,所以.又因为当为正偶数时,,且,所以两式相加可得,于是,两式相减得.所以,故.故答案为:.【点睛】关键点点睛:本题的解题关键在于分析出当为正奇数时,,以及当为正偶数时,,找出规律,结合并项求和法求出以及的值.14、【解析】利用平行间的距离公式可求得结果.【详解】由平行线间的距离公式可知,直线、间的距离为.故答案为:.15、4【解析】由题意得,再结合抛物线的定义即可求解.【详解】由题意得,由抛物线的定义知:,故答案为:4.16、【解析】可设直线的方程为,利用点到直线的距离公式求得,即可得解.【详解】可设直线的方程为,即,则原点到直线的距离为,解得,所以直线的方程为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)3【解析】(1)证得平面BCD,结合面面垂直判定定理即可得出结论;(2)建立空间直角坐标系,利用空间向量求二面角的公式可得,进而解方程即可求出结果.【小问1详解】因为,O是BC的中点,所以,又因为,且,平面BCD,平面BCD,所以平面BCD,因为平面ABC,所以平面平面BCD【小问2详解】连接OD,又因为是边长为2的等边三角形,所以,由(1)知平面BCD,所以AO,BC,DO两两互相垂直以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴建立如图所示空间直角坐标系设,则O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因为A-BCD的体积为,所以,解得,即A(0,0,3),,∵,∴,设平面BCD的法向量为,,则,取平面BCD的法向量为,,,设是平面BDE的法向量,则,∴取平面BDE的法向量,解得或(舍)18、(1)(2)【解析】(1)求出函数的导函数,根据题意结合导数的几何意义列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,从而,令,利用导数求出函数的最小值,即可求得实数的取值范围【小问1详解】解:,因为函数的图象在点处的切线与直线平行,所以,解得;【小问2详解】解:在上恒成立,即在上恒成立,,,令,则,当时,;当时,,函数在上单调递减,有上单调递增,,,即实数的取值范围是19、(1)(2)(3)【解析】(1)由频率分布直方图中所有频率和为1求出;(2)求出概率对应的值即为中位数;(3)求出第一组中总人数,得女性人数,然后求得恰有一名女性的方法数和总的方法数后可得概率【小问1详解】解:因为频率分布直方图的小矩形面积和为1,所以,解得,【小问2详解】解:前2组频率和为,前3组频率和为,所以中位数在第3组,设中位数为,则,;【小问3详解】解:第一组总人数为,男性人2人,则女性有4人,不妨记两名男性为,四名女性为,则随机抽取2名群众的可能为,,,共15种方案,其中恰有一名女性的方法数,共8种,所以第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率为20、(1)当,在单调递增;当,在单调递增,在单调递减.(2)0.【解析】(1)求得,对参数分类讨论,即可由每种情况下的正负确定函数的单调性;(2)根据题意求得,利用进行放缩,只需证即,再利用导数通过证明从而得到恒成立,则问题得解.【小问1详解】以为,其定义域为,又,故当时,,在单调递增;当时,令,可得,且令,解得,令,解得,故在单调递增,在单调递减.综上所述:当,在单调递增;当,在单调递增,在单调递减.【小问2详解】因为,故可得,则,;下证恒成立,令,则,故在单调递减,又当时,,故在恒成立,即;因为,故,令,下证在恒成立,要证恒成立,即证,又,故即证,令,则,令,解得,此时该函数单调递增,令,解得,此时该函数单调递减,又当时,,也即;令,则,令,解得,此时该函数单调递减,令,解得,此时该函数单调递增,又当时,,也即;又,故恒成立,则在恒成立,又,故当时,恒成立,则在上的零点个数是.【点睛】本题考察利用导数研究含参函数的单调性,以及函数零点问题的处理;本题第二问处理的关键是通过分离参数和构造函数,证明恒成立,属综合困难题.21、(1);(2)①;②定点有两个,【解析】(1)由双曲线方程有、、,根据已知条件有,即可求离心率.(2)①由题设有,结合(1)求双曲线参数,写出双曲线方程即可;②由题设可设为,,,联立双曲线方程结合韦达定理求,,,,再由、的方程求,坐标,若在为直径的圆上点,由结合向量垂直的坐标表示列方程,进而求出定点坐标.【小问1详解】由题设,若,且,又△为等腰直角三角形,∴,即,则又,可得.【小问2详解】由题设,,由(1)有,则,即,①由上可知:双曲线方程为.②由①知:,且直线的斜率不为0,设为,,,联立直线与双曲线得:,∴,,则,∴,∴直线为;直线为;∴,,若在为直径的圆上点,∴,且,∴,令,则,∴,即,∴或,即过定点.【点睛】关键点点睛:第二问的②,设直线为,联立直线与双曲线,应用韦达定理求,,,,进而根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论