




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8 推理与证明 复数 算法 1 推理方法 1 合情推理合情推理是根据已有的事实和正确的结论 包括定义 公理 定理等 实验和实践的结果 以及个人的经验和直觉等推测某些结果的推理过程 归纳和类比是合情推理常见的方法 在解决问题的过程中 合情推理具有猜测和发现结论 探索和提供思路的作用 有利于创新意识的培养 2 演绎推理演绎推理是指如果推理是从一般性的原理出发 推出某个特殊情况下的结论 我们把这种推理称为演绎推理 演绎推理的一般模式是 三段论 包括 大前提 小前提 结论 回扣问题1 1 在数列 an 中 a1 1 且sn sn 1 2s1成等差数列 则s2 s3 s4分别为 由此猜想sn 2 在平面上 若两个正三角形的边长之比1 2 则它们的面积之比为1 4 类似地 在空间中 若两个正四面体的棱长之比为1 2 则它的体积之比为 答案1 8 2 证明方法 1 直接证明 综合法一般地 利用已知条件和某些数学定义 定理 公理等 经过一系列的推理论证 最后推导出所要证明的结论成立 这种证明方法叫综合法 综合法又叫顺推法或由因导果法 分析法一般地 从要证明的结论出发 逐步寻求使它成立的充分条件 直至最后 把要证明的结论归结为判定一个明显成立的条件 已知条件 定义 定理 公理等 这种证明方法叫分析法 分析法又叫逆推法或执果索因法 2 间接证明 反证法一般地 假设原命题不成立 经过正确的推理 最后得出矛盾 因此说明假设错误 从而证明原命题成立 这种证明方法叫反证法 3 数学归纳法一般地 证明一个与正整数n有关的命题 可按下列步骤进行 归纳奠基 证明当n取第一个值n0 n0 n 时命题成立 归纳递推 假设n k k n0 k n 时命题成立 证明当n k 1时命题也成立 只要完成这两个步骤 就可以断定命题对从n0开始的所有正整数n都成立 上述证明方法叫做数学归纳法 回扣问题2 用反证法证明 若a b两数之积为0 则a b至少有一个为0 应假设 a a b没有一个为0b a b只有一个为0c a b至多有一个为0d a b两个都为0答案a 3 复数的概念对于复数a bi a b r a叫做实部 b叫做虚部 当且仅当b 0时 复数a bi a b r 是实数a 当b 0时 复数a bi叫做虚数 当a 0且b 0时 复数a bi叫做纯虚数 回扣问题3 设x r i是虚数单位 则 x 3 是 复数z x2 2x 3 x 1 i为纯虚数 的 a 充分不必要条件b 必要不充分条件c 充要条件d 既不充分也不必要条件 c b 5 算法 1 控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件 在解答这类题目时首先要弄清楚这两个变量的变化规律 其次要看清楚循环结束的条件 这个条件由输出要求所决定 看清楚是满足条件时结束还是不满足条件时结束 2 条件结构的程序框图中对判断条件的分类是逐级进行的 其中没有遗漏也没有重复 在解题时对判断条件要仔细辨别 看清楚条件和函数的对应关系 对条件中的数值不要漏掉也不要重复了端点值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年特岗教师招聘考试初中生物备考资料
- 甲状腺功能低下课件
- 江苏南京2022-2024年中考满分作文31篇
- 云南省楚雄彝族自治州联考2024-2025学年高二下学期7月期末化学试题(含答案)
- 辽宁省辽阳市2024-2025学年高一下学期期末考试物理试卷(含答案)
- 2025年福建省福州市一中中考数学适应性试卷(4月份)(含答案)
- 新解读《GB-T 36136-2018结核分枝杆菌耐药基因芯片检测基本要求》
- 新解读《GB-T 15054.2-2018小螺纹 第2部分:公差和极限尺寸》
- 生物实验安全知识培训课件
- 2025年考研英语(一)阅读理解细节理解 提升查找与识别细节能力试卷
- 《疯狂动物城》中英文对照(全本台词)
- 信息互联互通标准化成熟度测评-医科总医院
- 《氧化还原反应》完整版课件
- 人工智能导论课件
- 做一名新时代的优秀教师课件
- 中国古代的美育思想课件
- 日周月安全检查记录表
- 风力发电项目报价清单 (风机基础等)
- 重庆物业服务收费管理办法-重庆物价局
- GA∕T 1046-2013 居民身份证指纹采集基本规程
- (高清正版)SL 310-2019 村镇供水工程技术规范(完整版)
评论
0/150
提交评论