最大利润教学设计.doc_第1页
最大利润教学设计.doc_第2页
最大利润教学设计.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数的实际应用-最大利润问题 教学目标: 1能根据实际问题列出函数关系式、 2使学生能根据问题的实际情况,确定函数自变量x的取值范围。 3通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。重点:根据实际问题建立二次函数的数学模型,应用函数的性质解答数学问题难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,教学过程:一、复习旧知 导入新课 写出下列抛物线的开口方向、对称轴和顶点坐标。 (1)y6x212x; (2)y4x28x10 以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少? 有了前面所学的知识,现在就可以应用二次函数的知识去解决生活中的有关最大利润的实际问题。 二、探究新知 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件,已知商品的进价为每件40元,如何定价才能使利润最大? 探究过程:这种题型被称为“每每型”销售问题,根据下面的提问你能得到这道题的解法吗?(1) 题目中调整价格的方法是什么?涨价还是降价?(2) 题目中涉及到哪些变量?自变量是什么?那些量随之发生了变化?(3) 设出适当地自变量和函数(一般设涨了x元时利润为y元)(4) 列出下面的空格和表格填出对应的量。 每涨一元减少 件那么涨二元减少 件 涨三元减少 件 涨四元减少 件涨五元减少 件涨x元减少 件进价售价每件利润销售量涨价前涨价后(5) 列出相等关系:总利润=单个利润销售量 要明确这个关系是相对于变化后的量(6) 将表格中的量对应写在各个量下面(7) 写出解答过程(8) 求自变量的取值范围,在自变量取值范围内求最大值。师生共同完成解答过程。跟踪练习: 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台 (1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论