贝叶斯信念网络0ppt课件.ppt_第1页
贝叶斯信念网络0ppt课件.ppt_第2页
贝叶斯信念网络0ppt课件.ppt_第3页
贝叶斯信念网络0ppt课件.ppt_第4页
贝叶斯信念网络0ppt课件.ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六 贝叶斯信念网络 朴素贝叶斯分类器假定类条件独立 即给定样本的类标号Y 属性的值X之间相互条件独立 但在实践中 变量之间的依赖可能存在 贝叶斯信念网络不要求给定类的所有属性都条件独立 而是允许指定哪些属性条件独立 它提供一种因果关系的图形 1 某水文站内装有一个小型的警报系统 与该警报是否拉响相关的因素有 洪水到来 地震发生 同时该系统还肩负着安全警报的功能 当水文站发生入室盗窃时 警报同样也会拉响 而洪水的到来与降雨情况有关 地震的发生会反映在地震监测仪的报告中 同时 入室盗窃也会带来地震监测仪的扰动 在水文站以往的数据库中 关于以上这些因素都能找到详细的记录 那么如何从这些数据中挖掘出有用的信息 来帮助工作人员进行决策呢 假设某时刻警报突然拉响了 且此时正在下雨 值班人员要判断此时发生地震 盗窃和洪水的概率分别是多少 以便采取相应的措施加以应对 问题引入 2 1 有向无环图 3 例如 得肺癌受其家族肺癌史的影响 也受是否吸烟的影响 有向无环图 条件概率图 概率依赖 双亲或直接前驱 后继 非后继 独立 节点 随机变量 4 贝叶斯网络模型 网络的组成 1 一个有向无环图 表示变量之间的依赖关系 2 一个概率表 把各结点与它的直接父结点关联起来贝叶斯网络的一个重要性质 贝叶斯网络中的一个结点 如果它的父母结点已知 则它条件独立于它的所有非后代结点 5 概率表的建立 1 如果结点X没有父母结点 则表中只包含先验概率P X 2 如果结点X只有一个父母结点Y 则表中包含条件概率P X Y 3 如果结点X有多个父母结点 Y1 Y2 Yk 则表中包含条件概率P X Y1 Y2 Yk 6 一个简单的例子 由左图给出 它对下雨 R 引起草地变湿 W 建模 天下雨的可能性为 并且下雨时草地变湿的可能性为 也许 的时间雨下得不长 不足以让我们真正认为草地被淋湿了 在这个例子中 随机变量是二元的 真或假 存在 的可能性草地变湿而实际上并没有下雨 例如 使用喷水器时 7 可以看到三个值就可以完全指定P R W 的联合分布 如果P R 0 4 则P R 0 6 类似地 而这是一个因果图 解释草地变湿的主要原因是下雨 我们可以颠倒因果关系并且做出诊断 例如 已知草地是湿的 则下过雨的概率可以计算如下 8 9 现在 假设我们想把喷水器 作为草地变湿的另一个原因 如下图所示 节点 有两个父节点 和 因此它的概率是这两个值上的条件概率 我们可以计算喷水器开着草地会湿的概率 这是一个因果 预测 推理 10 0 1 11 给定草地是湿的 我们能够计算喷水器开着的概率 这是一个诊断推理 12 知道草是湿的增加了喷水器开着的可能 现在让我们假设下过雨 我们有 注意 这个值比小 这叫作解释远离explainingaway 给定已知下过雨 则喷水器导致湿草地的可能性降低了 已知草地是湿的 下雨和喷水器成为相互依赖的 13 某水文站内装有一个小型的警报系统 与该警报是否拉响相关的因素有 洪水到来 地震发生 同时该系统还肩负着安全警报的功能 当水文站发生入室盗窃时 警报同样也会拉响 而洪水的到来与降雨情况有关 地震的发生会反映在地震监测仪的报告中 同时 入室盗窃也会带来地震监测仪的扰动 在水文站以往的数据库中 关于以上这些因素都能找到详细的记录 那么如何从这些数据中挖掘出有用的信息 来帮助工作人员进行决策呢 七 贝叶斯信念网络应用实例 警报分析 马克威分析系统 14 1 有向无环图 15 2 条件概率表 先验概率 16 条件概率表 17 3 推理 1 当 警报拉响 降雨 地震 入室盗窃 洪水 假设某时刻警报突然拉响了 且此时正在下雨 值班人员要判断此时发生地震 盗窃和洪水的概率分别是多少 以便采取相应的措施加以应对 首先 设置警报和降雨为已知节点 观察值分别为拉响和降雨 并且指定地震 入室盗窃和洪水为目标节点 然后计算各种情况发生的后验概率 18 已知变量的状态观察值 地震 入室盗窃 洪水 19 2 当 警报拉响 降雨 地震监测仪信号弱 地震 入室盗窃 洪水 假设 同样在下雨天 警报突然拉响 如果此时值班人员还注意到了地震监测仪的状态处于弱信号的范围 那么到底地震 入室盗窃 洪水中哪个发生呢 解决的办法是设定 降雨节点处于降雨状态 警报节点处于拉响状态 地震监测仪处于弱状态 目标节点仍旧是地震 入室盗窃和洪水 然后 计算后验概率 20 已知变量的状态观察值 地震 洪水 入室盗窃 21 贝叶斯分类的优缺点 优点 在某些领域的应用上 其分类效果优于类神经网络和判定树 用于大型数据库 可以得出准确高且有效率的分类结果 缺点 一般而言 贝叶斯分类中的属性可以出现两种以上不同的值 而目标值则多半为两元的相对状态 如 是 否 好 坏 对 错 上 下 发生 不发生 等 22 贝叶斯

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论