数字化医院存储架构设计与实现.doc_第1页
数字化医院存储架构设计与实现.doc_第2页
数字化医院存储架构设计与实现.doc_第3页
数字化医院存储架构设计与实现.doc_第4页
数字化医院存储架构设计与实现.doc_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

选题背景与意义设计适应大型医院管理、患者治疗和普通人群保健的多功能网络架构。医学信息技术发展迅猛,医疗信息覆盖面更广,数据量更大,且信息种类繁多,还要保持每天24小时不间断更新。庞大的数据量使得一旦数据破坏或丢失、就会给医院造成不可估量的损失,所以有效的数据容灾建设对于医院信息系统来说至关重要。数据存储相关知识硬盘接口PATA硬盘并口接口规范PATA的全称是Parallel ATA,是并行ATA硬盘接口规格。 PATA标准规范产生于上个世纪80年代中期,Imprimis公司推出Wren系列5.25英寸硬盘(当时Compaq PC机所使用的硬盘)专用的“PCAT”接口,后来的3.5英寸硬盘也采用这项规格。由于“PC AT”这个名称很容易同IBM PC/AT机混淆,人们就为它选择了另外的名字:“Advanced Technology Attachment(高级技术附件规格)”,简称ATA.但它并不是我们所说的“第一代ATA”。这项规格只生存 了短短数个月,因为它令不同厂商的硬盘出现严重的不兼容问题,尤其在主从盘安装的时候更为严重。ATA-6也就是我们所说的ATA/100、UltraDMA/100,是当前最为普遍的ATA规格,它在2001年才通过ANSI认证。ATA -6增加了UltraDMA 5传输模式、速率提高到100MB/s的高水平,同时LBA模式的寻址能力也由原来的28位扩充到48位,这样就突破了硬盘最大可 用容量只能低于137GB的限制!目前主流的ATA-100和ATA-133,使用80排线做为数据线。在传输速度方面,ATA-100的速度是100MB/S,那么ATA- 133的速度便是133MB/S。单从这一方面,SATA就比PATA快出不少。SCSI小型计算机系统接口(英语:Small Computer System Interface; 简写:SCSI),一种用于计算机和智能设备之间(硬盘、软驱、光驱、打印机、扫描仪等)系统级接口的独立处理器标准。 SCSI是一种智能的通用接口标准。它是各种计算机与外部设备之间的接口标准。简介SCSI接口是一个通用接口,在SCSI母线上可以连接主机适配器和八个SCSI外设控制器,外设可以包括磁盘、磁带、CD-ROM、可擦写光盘驱动器、打印机、扫描仪和通讯设备等。 SCSI是个多任务接口,设有母线仲裁功能。挂在一个SCSI母线上的多个外设可以同时工作。SCSI上的设备平等占有总线。 SCSI接口可以同步或异步传输数据,同步传输速率可以达到10MB/s,异步传输速率可以达到1.5MB/s。 SCSI接口接到外置设备时它的连接电缆可以长达6m。历史最初的SCSI标准的最大同步传输速率为5MB/s(SCSI-1,又名Narrow SCSI,1986年,最大支持7个设备,时钟频率为5MHz),后来的SCSI II 规定了2种提高速度的选择。一种为提高数据传输的频率,即Fast SCSI(1994年,最大支持7个设备),由于频率提高一倍,达10MB/s(10MHz);另一种提高速度的选择是传输频率提高一倍的同时也增大数据通路的宽度,由8位增至16位,即Wide SCSI,其最大同步传输速度为20MB/s (时钟频率为10MHz,1996年,最大支持15个设备)。 1995年左右出现了第三代SCSI,但没有统一标准: 1. 最大同步传输速度达到20MB/s的Ultra SCSI(又称为Fast-20 SCSI,时钟频率为20MHz); 2最大同步传输速度达到40MB/s的Ultra Wide SCSI(同1); 3最大同步传输速度达到40MB/s的Ultra2 SCSI(又称为Fast-40 SCSI,时钟频率为40MHz,1997年)。 稍后,又出现了一些更新的SCSI标准: 1. 最大同步传输速度达到80MB/s的Ultra2 Wide SCSI(时钟频率为40MHz); 2最大同步传输速度达到160MB/s的Ultra 3 SCSI(又名Ultra-160或者Fast-80 Wide SCSI,时钟频率为40MHz加双倍数据速率,1999年); 3最大同步传输速度达到320MB/s的Ultra 320 SCSI(又名Ultra 4 SCSI,时钟频率为80MHz加双倍数据速率,2002年); 4最大同步传输速度达到640MB/s的Ultra 640 SCSI(时钟频率为160MHz加双倍数据速率,2003年,是目前最新的SCSI标准)。这种接口是一种便于系统集成、降低成本和提高效率的接口标准,越来越多的设备将使用SCSI接口标准,因此,带SCSI接口的硬盘和SCSI光盘驱动器也很多,但由于成本问题,主要用于中高端服务器与工作站上。类型1.SCSI-1SCSI-1是最原始的版本,异步传输的频率为3MB/S,同步传输的频率为5MB/s。虽然现在几乎被淘汰了,但还会使用在一些扫描仪和内部ZIP驱动器中,采用的是25针接口。也就是说,若是将SCSI-1设备联接到你的SCSI卡,必须要有一个内部的25针对50针的接口电缆;若是用外部设备时,就不能采用内部接口中的任何一个(即此时的内部接口均不可以使用)。2.SCSI-2早期的SCSI-2,称为FastSCSI,通过提高同步传输的频率使据传输速率从原有的5MB/s提高为10MB/s,支持8位并行数据传输,可连7个外设。后来出现的WideSCSI,支持16位并行数据传输,数据传输率也提高到了20MB/s,可连16个外设。此版本的SCSI使用一个50针的接口,主要用于扫描仪、CD-ROM驱动器及老式硬盘中。3.SCSI-31995年,诞生了更为高速的SCSI-3,称为UltraSCSI,数据传输率也达到了20MB/s。它将同步传输钟频率提高到20MB/s,提高了数据传输率的技术。若使用16位传输的Wide模式,数据传输率更可以提高至40MB/s。此版本的SCSI使用一个68针的接口,主要应用在硬盘上。SCSI-3的典型特点是将总线频率大大地提高,并降低信号的干扰,以此来增强其稳定性。优点1.SCSI可支持多个设备,SCSI-2(FastSCSI)最多可接7个SCSI设备,WideSCSI-2以上可接16个SCSI设备。也就是说,所有的设备只需占用一个IRQ,同时SCSI还支持相当广的设备,如CD-ROM、DVD、CDR、硬盘、磁带机、扫描仪等。 2.SCSI还允许在对一个设备传输数据的同时,另一个设备对其进行数据查找。这就可以在多任务操作系统如Linux、WindowsNT中获得更高的性能。 3.SCSI占用CPU极低,确实在多任务系统中占有着明显的优势。由于SCSI卡本身带有CPU,可处理一切SCSI设备的事务,在工作时主机CPU只要向SCSI卡发出工作指令,SCSI卡就会自己进行工作,工作结束后返回工作结果给CPU,在整个过程中,CPU均可以进行自身工作。 4.SCSI设备还具有智能化,SCSI卡自己可对CPU指令进行排队,这样就提高了工作效率。在多任务时硬盘会在当前磁头位置,将邻近的任务先完成,再逐一进行处理。 5.最快的SCSI总线有160MB/s的带宽,这要求使用一个64位的66MHz的PCI插槽,因此在PCI-X总线标准中所能达到的最大速度为80MB/s,若配合10,000rpm或15,000rpm转速的专用硬盘使用将带来明显的性能提升。SATASATA全称是Serial Advanced Technology Attachment(串行高级技术附件,一种基于行业标准的串行硬件驱动器接口),是由Intel、IBM、Dell、APT、Maxtor和Seagate公司共同提出的硬盘接口规范。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范,在当年的IDF Fall 大会上,Seagate宣布了Serial ATA 1.0标准,正式宣告了SATA规范的确立。来源 2002年虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范。SATA规范将硬盘的外部传输速率理论值提高到了150MB/s,比PATA标准ATA/100高出50%,比ATA/133也要高出约13%,而随着未来后续版本的发展,SATA接口的速率还可扩展到2X和4X(300MB/s和600MB/s)。从其发展计划来看,未来的SATA也将通过提升时钟频率来提高接口传输速率,让硬盘也能够超频。 分类 SATA接口需要硬件芯片的支持,例如Intel ICH5(R)、VIA VT8237、nVIDIA的MCP RAID和SiS964,如果主板南桥芯片不能直接支持的话,就需要选择第三方的芯片,例如Silicon Image 3112A芯片等,不过这样也就会产生一些硬件性能的差异,并且驱动程序也比较繁杂。 SATA的优势 支持热插拔,传输速度快,执行效率高 使用SATA(Serial ATA)口的硬盘又叫串口硬盘,是未来PC机硬盘的趋势。Serial ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。 串口硬盘是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而知名。相对于并行ATA来说,就具有很多的优势。首先,Serial ATA以连续串行的方式传送数据,一次只会传送1位数据。这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其次,Serial ATA的起点更高、发展潜力更大,Serial ATA 1.0定义的数据传输率可达150MB/s,这比最快的并行ATA(即ATA/133)所能达到133MB/s的最高数据传输率还高,而在Serial ATA 2.0的数据传输率达到300MB/s,最终SATA将实现600MB/s的最高数据传输率。 SATA的物理设计,可说是以Fibre Channel(光纤通道)作为蓝本,所以采用四芯接线;需求的电压则大幅度减低至250mV(最高500mV),较传统并行ATA接口的5V少上20倍!因此,厂商可以给Serial ATA硬盘附加上高级的硬盘功能,如热插拔(Hot Swapping)等。更重要的是,在连接形式上,除了传统的点对点(Point-to-Point)形式外,SATA还支持“星形”连接,这样就可以给RAID这样的高级应用提供设计上的便利;在实际的使用中,SATA的主机总线适配器(HBA,Host Bus Adapter)就好像网络上的交换机一样,可以实现以通道的形式和单独的每个硬盘通讯,即每个SATA硬盘都独占一个传输通道,所以不存在象并行ATA那样的主/从控制的问题。 前景 Serial ATA规范不仅立足于未来,而且还保留了多种向后兼容方式,在使用上不存在兼容性的问题。在硬件方面,Serial ATA标准中允许使用转换器提供同并行ATA设备的兼容性,转换器能把来自主板的并行ATA信号转换成Serial ATA硬盘能够使用的串行信号,目前已经有多种此类转接卡/转接头上市,这在某种程度上保护了原有投资,减小了升级成本;在软件方面,Serial ATA和并行ATA保持了软件兼容性,这意味着厂商丝毫也不必为使用Serial ATA而重写任何驱动程序和操作系统代码。 另外,Serial ATA接线较传统的并行ATA(Paralle ATA)接线要简单得多,而且容易收放,对机箱内的气流及散热有明显改善。而且,SATA硬盘与始终被困在机箱之内的并行ATA不同,扩充性很强,即可以外置,外置式的机柜(JBOD)不单可提供更好的散热及插拔功能,而且更可以多重连接来防止单点故障;由于SATA和光纤通道的设计如出一辙,所以传输速度可用不同的通道来做保证,这在服务器和网络存储上具有重要意义。 Serial ATA相较并行ATA可谓优点多多,将成为并行ATA的廉价替代方案。并且从并行ATA过渡到Serial ATA也是大势所趋,应该只是时间问题。相关厂商也在大力推广SATA接口,例如Intel的ICH6系列南桥芯片相较于ICH5系列南桥芯片,所支持的SATA接口从2个增加到了4个,而并行ATA接口则从2个减少到了1个;nVidia的nForce4系列芯片组已经支持SATA II即Serial ATA 2.0,而且三星已经采用Marvell 88i6525 SOC芯片开发新一代的SATA II接口硬盘,并在2005年初推出。 2007年制定了SATA2及SATA2.5标准,速度达到3000Mbps(理论上等同于375MB/s )。SAS SAS(Serial Attached SCSI),串行连接SCSI接口,串行连接小型计算机系统接口。 什么是SAS ? SAS是新一代的SCSI技术,和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,提供与串行ATA (Serial ATA,缩写为SATA)硬盘的兼容性。 SAS的接口技术可以向下兼容SATA。SAS系统的背板(Backpanel)既可以连接具有双端口、高性能的SAS驱动器,也可以连接高容量、低成本的SATA驱动器。因为SAS驱动器的端口与SATA驱动器的端口形状看上去类似,所以SAS驱动器和SATA驱动器可以同时存在于一个存储系统之中。但需要注意的是,SATA系统并不兼容SAS,所以SAS驱动器不能连接到SATA背板上。由于SAS系统的兼容性,IT人员能够运用不同接口的硬盘来满足各类应用在容量上或效能上的需求,因此在扩充存储系统时拥有更多的弹性,让存储设备发挥最大的投资效益。 SAS技术还有简化内部连接设计的优势,存储设备厂商目前投入相当多的成本以支持包括光纤通道阵列、SATA阵列等不同的存储设备,而SAS连接技术将可以通过共用组件降低设计成本。 SAS的特点 串行SCSI是点到点的结构,可以建立磁盘到控制器的直接连接。具有以下特点: 1、更好的性能: 点到点的技术减少了地址冲突以及菊花链连结的减速; 为每个设备提供了专用的信号通路来保证最大的带宽; 全双工方式下的数据操作保证最有效的数据吞吐量; 2、简便的线缆连结: 更细的电缆搭配更小的连接器; 3、更好的扩展性: 可以同时连结更多的磁盘设备。 由于串行SCSI(SAS)是点到点的结构,因此除了提高性能之外,每个设备连接到指定的数据通路上提高了带宽。SAS的电缆结构节省了空间,从而提高了使用SAS硬盘服务器的散热、通风能力。一般情况下,较大的并行电缆会带来电子干扰,SAS的电缆结构可以解决这个问题。此外SAS结构有非常好的扩展能力,最多可以连接16384个磁盘设备。 串行SCSI(SAS)硬盘使用与S-ATA相同的接口,但是使用较多的信号,因此SAS硬盘不能与S-ATA硬盘控制器连结。SAS是通用接口,支持SAS和S-ATA,SAS控制器可以支持SAS和SATA磁盘。S-ATA使用SAS控制器的信号子集,因此SAS控制器支持S-ATA硬盘。 初期的SAS硬盘使用2.5英寸封装,这样可以使机架服务器支持更多的硬盘,现在已经有厂商推出标准3.5英寸的SAS硬盘;初期产品的转速是10000RPM,而现在15000RPM的产品也已经问世。SAS硬盘与相同转速的SCSI硬盘相比有相同或者更好的性能。串行接口减少了线缆的尺寸,允许更快的传输速度,SAS硬盘传输数据可以达到3.0Gbit/sec。 每个SAS电缆有4根电缆,2根输入2根输出。SAS可以同时进行数据的读写,全双工的数据操作提高数据的吞吐效率。 SAS的发展史 2001年11月26日,Compaq、IBM、LSI逻辑、Maxtor和Seagate联合宣布成立SAS工作组。 在2003年的CEBIT大会上,惠普和希捷早已推出了SAS界面的硬盘样品。当时,英特尔和Emulex也表示,将计划开发支持SAS和SATA界面的处理器。去年11月,Adaptec也推出了SAS控制器出样,新品的平均数据带宽为3Gbps,峰值带宽达5Gbps。 未来,第二代和第三代的SAS界面将提供612Gbps的数据带宽,并支持HostRAID。 现在开发SAS架构的存储设备企业包括希捷、前迈拓、LSI Logic和Adaptec等。 SAS产品市场的发展趋势 在新一代以SAS为基础的应用结构下,SAS与SATA企业用硬盘是彼此能够截长补短非常理想的储存组件。SAS硬盘是为需求量较大及具备关键性处理任务的应用装置所设计的产品,而SATA硬盘则适合于近线储存及其它对于储存需求量较小的中小型企业所应用。 预计今年,低端的存储系统将由SATA取代SCSI硬盘,而高、中端的外部存储系统将大部分采用光纤通道。但存储系统价格的迅速下滑等因素却让业界对SAS硬盘的态度大幅改变。在产品价格快速下降的趋势下,存储设备厂商势必通过更具有成本优势的技术制造存储设备,而SAS硬盘正是符合这种需求的产品。另外,SAS系统和SATA系统的兼容性,以及I-SCSI连接标准的实行,也都会推动SAS系统的发展。 由于企业市场一向对新技术较为保守,也许SAS技术的普及不会像SATA技术那样迅速,但是这也只是时间问题。前迈拓公司预计,到2009年将有三分之二的外部存储设备采用SAS技术,以连接SAS或SATA硬盘。 SAS硬盘应用 存储设备的反应速度,除了各环节间的配合与操作系统的影响之外,硬盘的反应速度其实具有关键性的地位。企业级的工作站或存储设备,一般来说,都采用光纤信道(Fibre Channel,FC)与SCSI硬盘作为内部的存储媒体。但是随着SCSI硬盘在扩增性上的限制,SAS(Serial Attached SCSI)硬盘崭露头角。由于服务器厂商有越来越多采用SAS硬盘作为内部的存储媒体,那么在存储市场里,SAS硬盘是否会成为FC硬盘的劲敌?NetApp表示小型负载的应用可以采用SAS硬盘,可兼具预算与效能的考虑。 既然SAS硬盘比较适合小型负载的应用,那么哪些应用为小型负载的状况呢?NetApp解释,例如在1,000人以下的电子邮件系统,或者规模不大的ERP、CRM系统,很多国内中小企业就相当适合。而像是大型的ERP、CRM系统,或是在线实时交易系统等,因为传输量大,反应速度需要实时快速,所以还是应当采用更高端的光纤信道硬盘。 串行连接SCSI (Serial Attached SCSI,缩写为SAS) SAS是新一代的SCSI技术,和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。 SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,提供与串行ATA (Serial ATA,缩写为SATA)硬盘的兼容性。 SAS的接口技术可以向下兼容SATA。SAS系统的背板(Backplane)既可以连接具有双端口、高性能的SAS驱动器,也可以连接高容量、低成本的SATA驱动器。因为SAS驱动器的端口与SATA驱动器的端口形状看上去类似,所以SAS驱动器和SATA驱动器可以同时存在于一个存储系统之中。但需要注意的是,SATA系统并不兼容SAS,所以SAS驱动器不能连接到SATA背板上。 由于SAS系统的兼容性,IT人员能够运用不同接口的硬盘来满足各类应用在容量上或效能上的需求,因此在扩充存储系统时拥有更多的弹性,让存储设备发挥最大的投资效益。 SAS的接口技术可以向下兼容SATA。具体来说,二者的兼容性主要体现在物理层和协议层的兼容。在物理层,SAS接口和SATA接口完全兼容,SATA 硬盘可以直接使用在SAS的环境中,从接口标准上而言,SATA是SAS的一个子标准,因此SAS控制器可以直接操控SATA硬盘,但是SAS却不能直接使用在SATA的环境中,因为SATA控制器并不能对SAS硬盘进行控制;在协议层,SAS由3种类型协议组成,根据连接的不同设备使用相应的协议进行数据传输。其中串行SCSI协议(SSP)用于传输SCSI命令;SCSI管理协议(SMP)用于对连接设备的维护和管理;SATA通道协议(STP)用于 SAS和SATA之间数据的传输。因此在这3种协议的配合下,SAS可以和SATA以及部分SCSI设备无缝结合。 SAS系统的背板(Backplane)既可以连接具有双端口、高性能的SAS驱动器,也可以连接高容量、低成本的SATA驱动器。所以SAS驱动器和 SATA驱动器可以同时存在于一个存储系统之中。但需要注意的是,SATA系统并不兼容SAS,所以SAS驱动器不能连接到SATA背板上。由于SAS系统的兼容性,使用户能够运用不同接口的硬盘来满足各类应用在容量上或效能上的需求,因此在扩充存储系统时拥有更多的弹性,让存储设备发挥最大的投资效益。 在系统中,每一个SAS端口可以最多可以连接16256个外部设备,并且SAS采取直接的点到点的串行传输方式,传输的速率高达3Gbps,估计以后会有 6Gbps乃至12Gbps的高速接口出现。SAS的接口也做了较大的改进,它同时提供了3.5英寸和2.5英寸的接口,因此能够适合不同服务器环境的需求。SAS依靠SAS扩展器来连接更多的设备,目前的扩展器以12端口居多,不过根据板卡厂商产品研发计划显示,未来会有28、36端口的扩展器引入,来连接SAS设备、主机设备或者其他的SAS扩展器。 和传统并行SCSI接口比较起来,SAS不仅在接口速度上得到显著提升(现在主流Ultra 320 SCSI速度为320MB/sec,而SAS才刚起步速度就达到300MB/sec,未来会达到600MB/sec甚至更多),而且由于采用了串行线缆,不仅可以实现更长的连接距离,还能够提高抗干扰能力,并且这种细细的线缆还可以显著改善机箱内部的散热情况。 SAS目前的不足主要有以下方面: 1)硬盘、控制芯片种类少:只有希捷、迈拓以及富士通等为数不多的硬盘厂商推出了SAS接口硬盘,品种太少,其他厂商的SAS硬盘多数处在产品内部测试阶段。此外周边的SAS控制器芯片或者一些SAS转接卡的种类更是不多,多数集中在LSI以及Adaptec公司手中。 2)硬盘价格太贵:比起同容量的Ultra 320 SCSI硬盘,SAS硬盘要贵了一倍还多。一直居高不下的价格直接影响了用户的采购数量和渠道的消化数量,而无法形成大批量生产的SAS 硬盘,其成本的压力又会反过来促使价格无法下降。如果用户想要做个简单的RAID级别,那么不仅需要购买多块SAS硬盘,还要购买昂贵的RAID卡,价格基本上和硬盘相当。 3)实际传输速度变化不大:SAS硬盘的接口速度并不代表数据传输速度,受到硬盘机械结构限制,现在SAS硬盘的机械结构和SCSI硬盘几乎一样。目前数据传输的瓶颈集中在由硬盘内部机械机构和硬盘存储技术、磁盘转速所决定的硬盘内部数据传输速度,也就是80MBsec左右,SAS硬盘的性能提升不明显。 4)用户追求成熟、稳定的产品:从现在已经推出的产品来看,SAS硬盘更多的被应用在高端4路服务器上,而4路以上服务器用户并非一味追求高速度的硬盘接口技术,最吸引他们的应该是成熟、稳定的硬件产品,虽然SAS接口服务器和SCSI接口产品在速度、稳定性上差不多,但目前的技术和产品都还不够成熟。 不过随着英特尔等主板芯片组制造商、希捷等硬盘制造商以及众多的服务器制造商的大力推动,SAS的相关产品技术会逐步成熟,价格也会逐步滑落,早晚都会成为服务器硬盘的主流接口。 总结作为一种新的存储接口技术,SAS不仅在功能上可与Fibre Channel媲美,还具有兼容SATA的能力,因而被业界公认为取代并行SCSI的不二之选。据唯实数工程师介绍,SAS的优势主要体现在:灵活性,可以兼容SATA,为用户节省投资;扩展性,一个SAS域最多可以直连16384个设备;性能卓越,点对点的架构使性能随端口数量增加而提高;更合理的电缆设计,在高密度环境中提供更有效的散热。衡量一种技术的优劣通常有4个基本指标,即性能、可靠性、可扩展性和成本。回顾串行磁盘技术的发展历史,从光纤通道,到SATA,再到SAS,几种技术各有所长。光纤通道最早出现的串行化存储技术,可以满足高性能、高可靠和高扩展性的存储需要,但是价格居高不下;SATA硬盘成本倒是降下来了,但主要是用于近线存储和非关键性应用,毕竟在性能等方面差强人意;SAS应该算是个全才,可以支持SAS和SATA磁盘,很方便地满足不同性价比的存储需求,是具有高性能、高可靠和高扩展性的解决方案。SSDsolid state disk(固态硬盘),即用固态电子存储芯片阵列制成的硬盘,由控制单元和存储单元(DRAM或FLASH芯片)两部分组成。存储单元负责存储数据,控制单元负责读取、写入数据。拥有速度快,耐用防震,无噪音,重量轻等优点。广泛应用于军事、车载、工控、视频监控、网络监控、网络终端、电力、医疗、航空、导航设备等领域。简介固态硬盘的接口规范和定义、功能及使用方法上与普通硬盘的相同,在产品外形和尺寸上 ssd也与普通硬盘一致。其芯片的工作温度范围很宽(-4085)。目前广泛应用于军事、车载、工控、视频监控、网络监控、网络终端、电力、医疗、航空、导航设备等领域。虽然目前成本较高,但也正在逐渐普及到DIY市场。 由于固态硬盘技术与传统硬盘技术不同,所以产生了不少新兴的存储器厂商。厂商只需购买NAND存储器,再配合适当的控制芯片,就可以制造固态硬盘了。新一代的固态硬盘普遍采用SATA-3接口。固态硬盘的存储介质分为两种,一种是采用闪存(FLASH芯片)作为存储介质,另外一种是采用DRAM作为存储介质。 分类基于闪存的固态硬盘基于闪存的固态硬盘(IDE FLASH DISK、Serial ATA Flash Disk):采用FLASH芯片作为存储介质,这也是我们通常所说的SSD。它的外观可以被制作成多种模样,例如:笔记本硬盘、微硬盘、存储卡、优盘等样式。这种SSD固态硬盘最大的优点就是可以移动,而且数据保护不受电源控制,能适应于各种环境,但是使用年限不高,适合于个人用户使用。在基于闪存的固态硬盘中,存储单元又分为两类:SLC(Single Layer Cell 单层单元)和MLC(Multi-Level Cell多层单元)。SLC的特点是成本高、容量小、但是速度快,而MLC的特点是容量大成本低,但是速度慢。MLC的每个单元是2bit的,相对SLC来说整整多了一倍。不过,由于每个MLC存储单元中存放的资料较多,结构相对复杂,出错的几率会增加,必须进行错误修正,这个动作导致其性能大幅落后于结构简单的SLC闪存。此外,SLC闪存的优点是复写次数高达100000次,比MLC闪存高10倍。此外,为了保证MLC的寿命,控制芯片都校验和智能磨损平衡技术算法,使得每个存储单元的写入次数可以平均分摊,达到100万小时故障间隔时间(MTBF)。 基于DRAM的固态硬盘基于DRAM的固态硬盘:采用DRAM作为存储介质,目前应用范围较窄。它仿效传统硬盘的设计、可被绝大部分操作系统的文件系统工具进行卷设置和管理,并提供工业标准的PCI和FC接口用于连接主机或者服务器。应用方式可分为SSD硬盘和SSD硬盘阵列两种。它是一种高性能的存储器,而且使用寿命很长,美中不足的是需要独立电源来保护数据安全。优点SSD是摒弃传统磁介质,采用电子存储介质进行数据存储和读取的一种技术,突破了传统机械硬盘的性能瓶颈,拥有极高的存储性能,被认为是存储技术发展的未来新星。 固态硬盘的全集成电路化、无任何机械运动部件的革命性设计,从根本上解决了在移动办公环境下,对于数据读写稳定性的需求。全集成电路化设计可以让固态硬盘做成任何形状。与传统硬盘相比,SSD固态电子盘具有以下优点: 第一,SSD不需要机械结构,完全的半导体化,不存在数据查找时间、延迟时间和磁盘寻道时间,数据存取速度快,读取数据的能力在230M/s以上,最高的可达500M/s以上。 第二,SSD全部采用闪存芯片,经久耐用,防震抗摔,即使发生与硬物碰撞,数据丢失的可能性也能够降到最小。 第三,得益于无机械部件及FLASH闪存芯片,SSD没有任何噪音,功耗低。 第四,质量轻,比常规1.8英寸硬盘重量轻20-30克,使得便携设备搭载多块SSD成为可能。同时因其完全半导体化,无结构限制,可根据实际情况设计成各种不同接口、形状的特殊电子硬盘。缺点固态硬盘成本高目前的固态硬盘的每GB价格与传统硬盘相比依然有一定的差距,随着固态硬盘不断的发展,固态硬盘在2012年内每GB将低于1美元。固态硬盘将于2013到2016年内普及。 固态硬盘的寿命有限 对于采用Nand Flash作为存储介质的SSD来说,怀疑其使用寿命也不是没有道理的,理论上MLC的写入寿命为1万次,SLC的写入寿命为10万次。但是否意味着一个固态硬盘的寿命只有2到3年呢,这个也不一定。英特尔表示保证能在未来5年里,每天可以向其MLC SSD产品中写入100GB的数据,并且保证其数据的完整性。如果不是写入太频繁的话,正常使用用5年以上是没有问题的。 这里需要说明的是:其一次的使用次数为完全占用满其额定容量。 按照正常的使用频率,比如每天有大约600M的数据要存储,那么一个64G的SSD完全占满需要约100天,这算作使用一次。那么,即便你使用很频繁,在68年内也保证其寿命也是没有问题的,到那时,可能又有新型的存储介质了。因此,大家不必担心其寿命。应用固态存储的性能与节能表现如此优秀,许多行业应用已经开始呼唤这项存储领域的崭新革命,一些厂商也在该领域做出了不懈的努力与尝试。随着人类进入云计算、物联网时代,给SSD带来了巨大的商机。未来,SSD除了在传统的工业、军事、航天、行业应用外,在消费电子、云服务器、嵌入式设备、安防、节能减排、企业存储等领域也将有着广泛的市场需求。 如倍受关注的物联网,将各种信息传感设备,如RFID装置、红外传感器、GPS系统、激光扫描其等装置与互联网结合起来,形成一个巨大的传感网络。2015年将会有150亿台接入互联网的嵌入式设备,而每台设备都具有智能化的功能。客户基于自己的项目需求对电子盘要求也是多种多样的,为了满足嵌入式设备行业多样化需求,各大SSD厂家要根据客户实际情况,为客户订制特殊结构尺寸的IDE、USB、SATA、PCI-E等接口的固态存储设备。 同样,在近来火热的云计算应用中,服务器端必须同时肩负应用程序的处理与客户端的存取需求,如何在合理的成本之下,利用SSD来改善服务器的存取效率,满足客户端的存取需求,就成为包含云计算服务供货商与服务器制造商,必须要了解的课题。尤其针对云计算应用的精简终端,未来仍需要如固态硬盘(SSD)之类,可进行快速反应、节省功耗的储存设备。、 最新的intel的Z68芯片组,搭配SandBridge的CPU可以支持SRT技术,让你操作系统跑的更快,详细见 intel Z68,或者参考华硕主板P8Z68 系列.RAID磁盘阵列(Redundant Arrays of Inexpensive Disks,RAID),有“价格便宜且多余的磁盘阵列”之意。原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生加成效果提升整个磁盘系统效能。同时利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。磁盘阵列还能利用同位检查(Parity Check)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将数据经计算后重新置入新硬盘中。样式磁盘阵列其样式有三种,一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件来仿真。 外接式磁盘阵列柜最常被使用大型服务器上,具可热抽换(Hot Swap)的特性,不过这类产品的价格都很贵。 内接式磁盘阵列卡,因为价格便宜,但需要较高的安装技术,适合技术人员使用操作。 利用软件仿真的方式,由于会拖累机器的速度,不适合大数据流量的服务器。缓存磁盘阵列作为独立系统在主机外直连或通过网络与主机相连。磁盘阵列有多个端口可以被不同主机或不同端口连接。一个主机连接阵列的不同端口可提升传输速度。 和目前PC用单磁盘内部集成缓存一样,在磁盘阵列内部为加快与主机交互速度,都带有一定量的缓冲存储器。主机与磁盘阵列的缓存交互,缓存与具体的磁盘交互数据。 在应用中,有部分常用的数据是需要经常读取的,磁盘阵列根据内部的算法,查找出这些经常读取的数据,存储在缓存中,加快主机读取这些数据的速度,而对于其他缓存中没有的数据,主机要读取,则由阵列从磁盘上直接读取传输给主机。对于主机写入的数据,只写在缓存中,主机可以立即完成写操作。然后由缓存再慢慢写入磁盘。优点提高传输速率。RAID通过在多个磁盘上同时存储和读取数据来大幅提高存储系统的数据吞吐量(Throughput)。在RAID中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID最初想要解决的问题。因为当时CPU的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。RAID最后成功了。 通过数据校验提供容错功能。普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC(循环冗余校验)码的话。RAID容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。在很多RAID模式中都有较为完备的相互校验/恢复的措施,甚至是直接相互的镜像备份,从而大大提高了RAID系统的容错度,提高了系统的稳定冗余性。规范RAID技术主要包含RAID 0RAID 7等数个规范,它们的侧重点各不相同,常见的规范有如下几种: RAID 0:RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,RAID 0不能应用于数据安全性要求高的场合。RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。 RAID 1+0:也被称为RAID 10标准,实际是将RAID 0和RAID 1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。它的优点是同时拥有RAID 0的超凡速度和RAID 1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低。 RAID 10: RAID 10是将镜像和条带进行两级组合的RAID级别,第一级是RAID1镜像对,第二级为RAID 0。RAID10也是一种应用比较广泛的RAID级别。RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂,因此在商业环境中很少使用。 RAID 3:它同RAID 2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID 3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。RAID 4:RAID 4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID 4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为写操作的瓶颈,因此RAID 4在商业环境中也很少使用。 RAID 5:RAID 5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。在RAID 5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。RAID 5更适合于小数据块和随机读写的数据。RAID 3与RAID 5相比,最主要的区别在于RAID 3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID 5来说,大部分数据传输只对一块磁盘操作,并可进行并行操作。在RAID 5中有“写损失”,即每一次写操作将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。RAID 6:与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。但RAID 6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID 5有更大的“写损失”,因此“写性能”非常差。较差的性能和复杂的实施方式使得RAID 6很少得到实际应用。RAID 7:这是一种新的RAID标准,其自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID 7可以看作是一种存储计算机(Storage Computer),它与其他RAID标准有明显区别。除了以上的各种标准(如表1),我们可以如RAID 0+1那样结合多种RAID规范来构筑所需的RAID阵列,例如RAID 5+3(RAID 53)就是一种应用较为广泛的阵列形式。用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。 RAID 5E(RAID 5 Enhencement): RAID 5E是在RAID 5级别基础上的改进,与RAID 5类似,数据的校验信息均匀分布在各硬盘上,但是,在每个硬盘上都保留了一部分未使用的空间,这部分空间没有进行条带化,最多允许两块物理硬盘出现故障。看起来,RAID 5E和RAID 5加一块热备盘好象差不多,其实由于RAID 5E是把数据分布在所有的硬盘上,性能会与RAID5 加一块热备盘要好。当一块硬盘出现故障时,有故障硬盘上的数据会被压缩到其它硬盘上未使用的空间,逻辑盘保持RAID 5级别。 RAID 5EE: 与RAID 5E相比,RAID 5EE的数据分布更有效率,每个硬盘的一部分空间被用作分布的热备盘,它们是阵列的一部分,当阵列中一个物理硬盘出现故障时,数据重建的速度会更快。 RAID 50:RAID50是RAID5与RAID0的结合。此配置在RAID5的子磁盘组的每个磁盘上进行包括奇偶信息在内的数据的剥离。每个RAID5子磁盘组要求三个硬盘。RAID50具备更高的容错能力,因为它允许某个组内有一个磁盘出现故障,而不会造成数据丢失。而且因为奇偶位分部于RAID5子磁盘组上,故重建速度有很大提高。优势:更高的容错能力,具备更快数据读取速率的潜力。需要注意的是:磁盘故障会影响吞吐量。故障后重建信息的时间比镜像配置情况下要长。常用RAID比较存储虚拟化概念:SNIA(存储网络工业协会)对存储虚拟化的定义:The act of abstracting, hiding or isolating the internal function of a storage (sub) system or service from applications, compute servers or general network resources for the purpose of enabling application and network independent management of storage or data.The application of virtualization to storage services or devices for the purpose of aggregating, hiding complexity or adding new capabilities to lower level storage resources. Storage can be virtualized simultaneously in multiple layers of a system, for instance to create HSM-like systems.参考译文:通过对存储(子)系统或存储服务的内部功能进行抽象、隐藏或隔离,使存储或数据的管理与应用、服务器、网络资源的管理分离,从而实现应用和网络的独立管理。对存储服务和设备进行虚拟化,能够在对下一层存储资源进行扩展时进行资源合并、降低实现的复杂度。存储虚拟化可以在系统的多个层面实现,比如建立类似于HSM(分级存储管理)的系统。虚拟化的原理存储虚拟化的目的用虚拟化简化IT架构存储虚拟

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论