


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
14.3因式分解第2课时14.3.2平方差公式【教学目标】知识与技能用平方差公式进行因式分解,发展学生推理能力.会应过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.【教学重难点】重点:利用平方差公式分解因式.难点:领会因式分解的解题步骤和分解因式的彻底性.关键:应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.【教学过程】一、观察探讨,体验新知【问题牵引】问题1:你能叙述多项式因式分解的定义吗?1、 多项式的因式分解其实是整式乘法的逆用,也就是把一个多项式化成了几个整式的积的形式 问题2:运用提公因式法分解因式的步骤是什么?2提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,就不能使用提公因式法对该多项式进行因式分解问题3:你能将a2-b2分解因式吗?3、要将a2-b2进行因式分解,可以发现它没有公因式,不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的平方差形式,所以用平方差公式可以写成如下形式: a2-b2=(a+b)(a-b)多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法今天我们就来学习利用平方差公式分解因式请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25;2.分解因式16m2-9n2.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学例1:把下列各式分解因式:(投影显示或板书)(1)4x2-9 (2)(x+p)2-(x+q)2解:【分析】在观察中发现这两题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请2位学生上讲台板演.【学生活动】分四人小组,合作探究.例2: 分解因式: (1)x4-y4; (2) a3b ab.分析:(1)x4-y4可以写成(x2)2-(y2)2的形式,这样就可以利用平方差公式进行因式分解了.(2)a3b-ab有公因式ab,应先提出公因式,再进一步分解.解:(1) x4-y4 = (x2+y2)(x2-y2) = (x2+y2)(x+y)(x-y)(2) a3b-ab=ab(a2-1)=ab(a+1)(a-1).三、随堂练习,巩固深化课本117页练习第1、2题.【探研时空】(小黑板出示)1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能 1如果多项式各项含有公因式,则第一步是提出这个公因式 2如果多项式各项没有公因式,则第一步考虑用公式分解因式 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物资储备仓库安全员招聘考试重点解析
- 甲状腺肿课件
- 脑干损伤护理查房
- 黑龙江省哈尔滨市联考2024-2025学年高二下学期7月期末教学质量检测物理试题(含答案)
- 中班动画城教学课件
- 用橡皮筋作动力课件
- 急性肾功能衰竭钙磷紊乱护理查房
- 急性脊髓炎高位截瘫护理查房
- 生活常识应急知识培训课件
- 癫痫持续状态护理查房记录
- 证据目录范本
- 标准档案盒脊背(格式已设置好)
- 中式烹调师(高级技师考试资料)
- GB/T 21475-2008造船指示灯颜色
- 园林绿化工高级技师知识考试题库(附含答案)
- 安医大生殖医学课件04胚胎的培养
- 可下载打印的公司章程
- 关于推荐评审高级工程师专业技术职务的推荐意见报告
- Q∕GDW 10356-2020 三相智能电能表型式规范
- 教研工作手册
- CINV化疗相关呕吐课件
评论
0/150
提交评论