


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2 简单的三角恒等变换【教学目标】会用已学公式进行三角函数式的化简、求值和证明,引导学生推导半角公式,积化和差、和差化积公式(公式不要求记忆),使学生进一步提高运用转化、换元、方程等数学思想解决问题的能力。【教学重点、难点】 教学重点:引导学生以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。【教学过程】复习引入:复习倍角公式、 先让学生默写三个倍角公式,注意等号两边角的关系,特别注意。既然能用单角表示倍角,那么能否用倍角表示单角呢?半角公式的推导及理解 : 例1、 试以表示解析:我们可以通过二倍角和来做此题(二倍角公式中以a代2a,代a)解:因为,可以得到;因为,可以得到两式相除可以得到点评:以上结果还可以表示为: 并称之为半角公式(不要求记忆),符号由角的象限决定。降倍升幂公式和降幂升倍公式被广泛用于三角函数式的化简、求值、证明。代数式变换往往着眼于式子结构形式的变换,三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系他们的适当公式,这是三角式恒等变换的重要特点。变式训练1:求证积化和差、和差化积公式的推导(公式不要求记忆):例2:求证:();()解析:回忆并写出两角和与两角差的正余弦公式,观察公式与所证式子的联系。证明:()因为和是我们所学习过的知识,因此我们从等式右边着手;两式相加得;即;()由()得;设,那么把的值代入式中得点评:在例证明中用到了换元思想,()式是积化和差的形式,()式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式变式训练2:课本p142 2(2)、3(3)例、求函数的周期,最大值和最小值解析:利用三角恒等变换,先把函数式化简,再求相应的值。解: ,所以,所求的周期,最大值为,最小值为点评:例是三角恒等变换在数学中应用的举例,它使三角函数中对函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用变式训练3:课本p142 4、(1)(2)(3)探究:求y=asinx+bcosx的周期,最大值和最小值小结:我们要对三角恒等变换过程中体现的换元、逆向使用公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省莆田市某校2024-2025学年四年级上学期第一次月考数学试题
- 单元考点必刷卷 (一)(含答案)我上学啦 2025-2026学年北师大版一年级数学上册
- 高升专考试题及答案
- 校园体育文化特征主要包括
- 批判现实主义绘画课件
- 93阅兵精神主题班会学习阅兵精神争做时代少年
- 2025年多媒体电脑超声诊断仪项目发展计划
- 2025年保育师考试面试真题及答案
- 2025年入学拼音考试题目及答案
- 慢性乙肝肝炎课件
- 防高处坠落-物体打击专项施工方案
- 数据文化与我国时空大数据的发展
- 2021年中国华电集团公司组织架构和部门职能
- 现代生物技术教学课件
- 教科版八年级物理上册第4章第7节通过透镜看世界ppt课件
- 20-100t桥式行车拆除施工方案32
- 大洁王枪水MSDS
- 国标法兰尺寸对照表
- 德国DVGW543标准
- 安全生产资金投入计划
- 四川建筑工程测量放线施工方案
评论
0/150
提交评论