




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
横水一中教学设计 2013-2014学年度上期学 科数学年 级九年级执教者杨慧课 题21.3二次根式的混合运算(二)课时安排1课时课 型新授课教学目标1使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子。2熟练地进行二次根式的加、减、乘、除混合运算。教学重点含二次根式的式子的混合运算。教学难点综合运用二次根式的性质及运算法则化简和计算含二次根式的式子。教学准备PPT教学方法讲授法、讨论法、合作探究法教 学 过 程批 注导课1请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式2二次根式的乘法及除法的法则是什么?用式子表示出来指出:二次根式的乘、除法则也是在一定条件下成立的把两个二次根式相除,结果要把分母有理化3在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:授课 二、例题例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a0和1-a0这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的问:上面的代数式中的两个二次根式的被开方数的式子如何化为完全平方式?分析:先把第二个式子化简,再把两个式子进行通分,然后进行计算三、课堂练习1选择题:Aa2Ba2Ca2Da2Ax+2 B-x-2C-x+2Dx-2A2x B2aC-2xD-2a2填空题:4计算:四、小结1本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握2在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围3运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件4通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题五、作业1x是什么值时,下列各式在实数范围内有意义?2把下列各式化成最简二次根式:板书设计:21.3二次根式的混合运算(二)一、 复习1、二次根式的乘法及除法的法则 2、在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医生入职笔试题及答案
- 2025年科技互联网行业分析报告:物联网技术在智慧城市照明中的应用
- 2025年教育游戏化在幼儿教育中的实践与教学设计探索
- 2025年工业互联网平台数字签名技术在智能客服系统中的应用报告
- 河南省沁阳市中考数学真题分类(勾股定理)汇编综合训练试题(解析版)
- 生活服务协议的法律分析
- 押题宝典高校教师资格证之《高等教育心理学》通关考试题库含答案详解(预热题)
- 2025年度电商内容营销与SEO优化外包服务合同
- 2025年度事业单位教师岗位聘用合同规范范本
- 2025年车辆零担运输劳务合作协议
- 2025海南省老干部服务管理中心招聘事业编制人员6人(第1号)考试备考题库及答案解析
- 2025年内江市总工会公开招聘工会社会工作者(14人)笔试模拟试题及答案解析
- 2025云南辅警笔试题目及答案
- 2025四川内江市总工会招聘工会社会工作者14人笔试备考试题及答案解析
- 2025-2026学年湘教版(2024)初中数学八年级上册教学计划及进度表
- 2025至2030中国公安行业发展趋势分析与未来投资战略咨询研究报告
- 2025年三支扶陕西试题及答案
- GB/T 45763-2025精细陶瓷陶瓷薄板室温弯曲强度试验方法三点弯曲或四点弯曲法
- 【MOOC】理解马克思-南京大学 中国大学慕课MOOC答案
- 全过程工程咨询投标方案(技术方案)
- (高清版)DZT 0388-2021 矿区地下水监测规范
评论
0/150
提交评论