高数教案(3).doc_第1页
高数教案(3).doc_第2页
高数教案(3).doc_第3页
高数教案(3).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课 题1.3极限的概念日 期星 期科长签字教 学目 的1.理解极限的概念,函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。2.熟练掌握和时f(x)的极限存在的充要条件重 点难 点重点:函数极限与数列极限的概念难点:1.函数极限的定义及、的含义2.分段函数在时的极限的讨论方法课 堂类 型理论课教学方法讲授法教学内容与过程方法与 环节一、导入新课1.写出下列函数的复合过程(1) (2) 思考:若,当无限的靠近1时,值怎样变化?二、讲授新课(一)函数的极限(1)定义 函数y=f(x),当自变量x无限接近于某个目标时(一个数x,或+或),因变量y无限接近于一个确定的常数A,则称函数f(x)以A为极限。规定: x从x的左右两侧无限接近于x,记x x x从x的左两侧无限接近于x,记x x x从x的右两侧无限接近于x,记x x x无限增大时,用记号x + x无限减小时,用记号x 无限增大时,用记号x (2)点x的邻域N(x,)=(x,x+),其中很小的正数,X的去心邻域N(,)=.1、 x x时函数的极限举例说明:x 1时,函数无限接近于多少?观察:当:x 1时,f(x)=x+1,无限接近2当:x 1时,g(x)=,无限接近2f(x)在x=1有定义,g(x)在x=1处无定义定义1 如果当x x时,函数无限趋近于一个确定的常数, 则称为函数当 x x时的极限,记作f(x)=A或 (当 x x时).此时也称存在。如果当x x时, 函数不趋近于任何一个确定的常数,则称不存在。如 : ,又如= 2注意 : f(x)=在 处无定义, 但当 时,函数f(x)=无限趋近于一个确定的常数2,所以=2。 结论:函数当 x x时的极限是否存在,与在点处是否有定义无关. 如上举例f(x)=在 处无定义, 但 = 2.定义2 右极限 当x x,有定义3 左极限 当x x,有函数的左极限和右极限统称为函数的单侧极限。定理1 极限存在的充分必要条件 函数 当时的极限存在的充分必要条件是,当时的左右极限都存在并且相等.即 注:求分段函数的极限的方法就是计算它在指定点的左极限和右极限是否存在并且是否相等。例如:判断下列函数在指定点的是否存在极限 (当时) (当时)解: , 函数在指定点的极限不存在。 , 函数在指定点的极限=0定理2 f(x)=Af(x)=f(x)=A(二)数列的极限定义4 对于数列,如果当n无限增大时,通项无限接近于某个确定的常数A,则称A为数列的极限,或称数列收敛于A,记为=A或A(n)定理3 单调数列极限存在定理单调增加(上升)数列:单调减少(下降)数列:单调增加数列和单调减少数列统称为单调数列。单调有界原理:单调有界数列必有极限。(三)关于极限的几点说明1 一个变量前加上记号“lim”后,是个确定值。例:正n边形面积,= 圆面积2 关于“x”的理解:只要求在的充分小邻域有定义。与在点和远离点有无意义无关。例:在求分段函数的极限时尤为重要。3 常数函数的极限等于其本身。即:C=C四、小结理解极限的概念,函数左

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论