




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数列通项公式的求法1前n项和法(知求) 例1、已知数列的前n项和,求数列的前n项和变式:已知数列的前n项和,求数列的前n项和答案: ;变式: 练习:1、若数列的前n项和,求该数列的通项公式。答案:2、若数列的前n项和,求该数列的通项公式。答案:3、设数列的前n项和为,数列的前n项和为,满足,求数列的通项公式。答案:2.形如型(累加法)(1)若f(n)为常数,即:,此时数列为等差数列,则=.(2)若f(n)为n的函数时,用累加法.例 1. (2003天津文) 已知数列an满足,证明证明:由已知得: = .例2.已知数列的首项为1,且写出数列的通项公式.答案: 例3.已知数列满足,求此数列的通项公式.答案:评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。3.形如型(累乘法)(1)当f(n)为常数,即:(其中q是不为0的常数),此数列为等比且=.(2)当f(n)为n的函数时,用累乘法. 例1、在数列中 ,求数列的通项公式。答案:练习:1、在数列中 ,求。答案:2、求数列的通项公式。解答:由已知当,N-1个式子累乘,得到当n=1,也满足,所以4.形如型(取倒数法)例1. 已知数列中,求通项公式 解:取倒数: 练习:1、若数列中,,求通项公式.答案:2、若数列中,求通项公式.答案:5形如,其中)型(构造新的等比数列)(1)若c=1时,数列为等差数列;(2)若d=0时,数列为等比数列;(3)若时,数列为线性递推数列,其通项可通过待定系数法构造辅助数列来求.方法如下:设,利用待定系数法求出A例1已知数列中,求通项.分析:待定系数法构造构造新的等比数列。解:由设,解出A=-1,则所以数列构成以为首项,以为公比的等比数列所以,即 . 练习:1、若数列中,,求通项公式。答案:2、若数列中,,求通项公式。答案:6.形如型(构造新的等比数列)(1)若一次函数(k,b是常数,且),则后面待定系数法也用一次函数。例题. 在数列中,,求通项.解:原递推式可化为比较系数可得:k=-6,b=9,上式即为所以是一个等比数列,首项,公比为. 即:,故.练习:1、已知数列中,求通项公式答案:(2)若(其中q是常数,且n0,1)若p=1时,即:,累加即可若时,即:,后面的待定系数法也用指数形式。两边同除以 . 即: ,令,则可化为.然后转化为类型5来解,例1. 在数列中,且求通项公式解:由得 .设,则b. 即:,所以是首项为,公比为的等比数列.则=,即:,故评注:本题的关键是两边同除以3,进而转化为类型5,构造出新的等比数列,从而将求一般数列的通项问题转化为求等比数列的通项问题.练习:1、已知数列中,求通项公式。答案:2、已知数列中,求通项公式。答案:7.形如(其中p,q为常数)型(1)当p+q=1时 用转化法例1.数列中,若,且满足,求.解:把变形为.则数列是以为首项,3为公比的等比数列,则 利用类型6的方法可得 .(2)当时 用待定系数法.例2. 已知数列满足,且,且满足,求.解:令,即,与已知比较,则有,故或由来运算,即有,则数列是以为首项,3为公比的等比数列,故,即 由来运算,即有,则数列是以为首项,2为公比的等比数列,故,即 由可得. 评注:形如的递推数列,我们通常采用两次类型(5)的方法来求解,但这种方法比较复杂,我们采用特征根的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 足球传接球 教学设计-2023-2024学年高一上学期体育与健康人教版必修第一册
- 第1课 彩虹出现-渐变工具的使用说课稿-2025-2026学年初中信息技术辽师大版2015八年级上册-辽师大版2015
- 5.1 分式的意义教学设计-2025-2026学年初中数学浙教版2024七年级下册-浙教版2024
- 5.5 线性规划问题的应用举例说课稿-2025-2026学年中职基础课-职业模块 财经、商贸与服务类-高教版-(数学)-51
- 二年级语文下册 课文3 11 我是一只小虫子第1课时说课稿 新人教版
- 2025年标准员考试题库及答案
- 2025年海口市滨海第九小学四年级第七单元测试数学试卷新课
- 2025年北京社区考试题库及答案
- 第12課 夏休みの思い出 教案2024-2025学年初中日语人教版七年级第一册
- 2025办公大楼租赁合同范本
- TCCEAS001-2022建设项目工程总承包计价规范
- 大学普通化学-课件文档
- DB37T 4010-2020 含阿胶的食品中阿胶含量的测定方法
- 《植物生理学》课件第五章+同化物的运输
- 工程结构设计原理课件--钢梁承载力计算原理
- 质量成长记-过程模式作业表
- 六年级上册美术课件-第一课图形创意与联想|冀教版共15张PPT
- 漆黑的魅影-精灵分布图鉴
- 三年级上册信息技术全册课件ppt
- 小学语文分层作业设计
- 年产xxx套劳保用品项目营销策划方案_范文
评论
0/150
提交评论