第3周(9年级)教学设计.doc_第1页
第3周(9年级)教学设计.doc_第2页
第3周(9年级)教学设计.doc_第3页
第3周(9年级)教学设计.doc_第4页
第3周(9年级)教学设计.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

- - 6 - -海韵教育 数学(981226780数学思想专题培训-函数与几何(一)数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中奠基性成分,是学生获得数学能力必不可少的。数学思想方法的训练,是把知识型教学转化为能力型教学的关键,是实话素质教育的重要组成部分。初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程及几何的思想方法等。本节就函数与几何进行专题培训例1、如图,现有两块全等的直角三角形纸板,它们两直角边的长分别为1和2将它们分别放置于平面直角坐标系中的AOB,COD处,直角边OB,OD在x轴上一直尺从上方紧靠两纸板放置,让纸板沿直尺边缘平行移动当纸板移动至PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H(1)求直线AC所对应的函数关系式;(2)当点P是线段AC(端点除外)上的动点时,试探究:点M到x轴的距离h与线段BH的长是否总相等?请说明理由;两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由AOEGBFHNCPIxyM(第1题答图)KII练习一、锐角ABC中,BC=6,SABC=12,两动点M,N分别在边AB,AC上滑动,且MNBC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与ABC公共部分的面积为y(y0)(1)ABC中边BC上高AD= (2)当x= 时,PQ恰好落在边BC上(如图1);(3)当PQ在ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?练习二、如图,在直角坐标系xoy中,点P为函数在第一象限内的图象上的任一点,点A的坐标为(0,1),直线过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,于C,Q,连结AQ交x轴于H,直线PH交y轴于R(1)求证:H点为线段AQ的中点;(2)求证:四边形APQR为平行四边形;平行四边形APQR为菱形;(3)除P点外,直线PH与抛物线有无其它公共点?并说明理由 例二、如图1,在RtABC中,A=900,AB=AC,BC=4,另有一等腰梯形DEFG(GFDE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点(1)求等腰梯形DEFG的面积;(2)操作:固定ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止设运动时间为x秒,运动后的等腰梯形为DEFG(如图2)探究1:在运动过程中,四边形BDGG能否是菱形?若能,请求出此时x的值;若不能,请说明理由探究2:设在运动过程中ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式 练习三、已知:如图,在直角梯形COAB中,OCAB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的?(3)动点P从点O出发,沿折线OABD的路线移动过程中,设OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD为矩形?请求出此时动点P的坐标;若不能,请说明理由练习四、如图,平行四边形ABCD中,AB5,BC10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合)过E作直线AB的垂线,垂足为F FE与DC的延长线相交于点G,连结DE,DF;(1) 求证:BEF CEG(2) 当点E在线段BC上运动时,BEF和CEG的周长之间有什么关系?并说明你的理由(3)设BEx,DEF的面积为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论