多晶硅工艺中英文对照表.doc_第1页
多晶硅工艺中英文对照表.doc_第2页
多晶硅工艺中英文对照表.doc_第3页
多晶硅工艺中英文对照表.doc_第4页
多晶硅工艺中英文对照表.doc_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多晶硅工艺中英文对照表硅烷(SiH4):Silane二氧化硅(SiO2) :Silica一氯三氢硅(SiH3Cl):Monochlorosilane二氯二氢硅(SiH2Cl2):Dichlorosilane(DCS)三氯氢硅(SiHCl3):Trichlorosilane(TCS)四氯化硅(SiCl4):Silicon Tetrachloride(STC)冶金级硅:Metallurgical-Grade Silicon(MG-Si)多晶硅:Polycrystalline Silicon(Polysilicon)单晶硅:Single Crystal(Crystal)硅树脂:Silicone硅油:Silicon Oil载气:Carrier Gas粉末二氧化硅 :Fumed Silica光纤:Fiber optil外延层:Epitaxial Layer非晶(无定形)层:Amorphous Layer多晶层:Polysilicon Layer化学汽相沉积工艺:Chemical-vapor-deposition processes棒状、块状多晶硅:Rod、Chunk Polysilicon少数载流子寿命:Minority Carrir life-time晶格:Crystallographic Lattice施主杂质:Dopant impurity受主杂质:Accept impurity氧:Oxygen碳:Carbon重金属:Heavy metals蒸汽压:Vapor Pressure密度:Density热容:Heat Capacity自由能:Free Energy标准焓:Standart Enthalpy标准熵:Standart Entropy表面张力:Surface Tension粘度:Viscosity热导率:Thermal Conductivity转换效率:Conversion Efficiency沉积速率:Deposition Rate催化剂:Catalytic agent偶联剂:Coupling agent表压(磅/平方英吋)Psig:(pounds per square inch gauge)蒸发:Evaporate溶解:Dissolve浓缩、凝缩:Condensation浓度、浓缩:Concentration吸收:Absorb吸附:Adsoption蒸馏:Dislillation置换:Replacement捕获、收集:Capture分解:Decompose分裂:Dissociation污染:Contaminate腐蚀性:Corrosive汽态吸收:Gaseous Absorption全闭路循环:Fully Closed-loop水解反应:Hydrolysis Reaction氢气中TCS的分子比率:Mole ration of TCS in H2着火:Ignition发烟:Smoke起火:Fire燃烧:Burn爆炸:Explosion活性碳柱:Activated Carbon Column薄雾淋洗塔:Falling film tower流化床反应炉(FBR):Fluidied Bed Reactor石英钟罩反应炉:Quartz bell jar reactor金属钟罩反应炉:Metal bell jar reactor氯硅烷主要反应式:SiO2+2CSi+2CO (由石英石制备工业硅)Si+3HClSiHCl3+H2 (沸腾氯化制取三氯氢硅)3SiCl4+2H2+Si+Cu催化剂4SiHCl3(800 3Mpa 约37%的转化率) (四氯化硅氢化生成三氯氢硅)SiHCl3+H2Si+3HCl(1375K) (三氯氢硅氢还原制备多晶硅)SiHCl3+HClSiCl4+H23 SiHCl3Si+2 SiCl4+HCl+ H22 SiHCl3SiH2Cl2+ SiCl42 SiH2Cl2SiH3Cl+ SiHCl3 硅烷( SiH4 )的四种制备方法1、由四氯化硅与氢化鋰反应4LiH+ SiCl4SiH4+4LiCl2、由硅镁合金与氯化氨反应Mg2Si+4NH4ClSiH4+2MgCl+4NH33、由一氯三氢硅分解2 SiH3ClSiH4+ SiH2Cl24、Ethyl公司早期开发的硅烷制备工艺:它是用过磷酸钙肥料工业的副产品(a by-product from the superphosphate fertilizer industry)氟硅酸(H2SiF6)作原料,主要的反应式为:H2SiF6 +H2SO4SiF4+2HF SiF4+LiHSiH4+4LiF(在二苯基乙醚里,525K) LiH是用金属鋰在矿物油里与氢反应而制得,收率可达90%Handbook ofSemiconductor Silicon Technology序 Semiconductor silicon has become the most important and characteristic material of our age-the silicon age. It has achieved this distinction with a rather modest volume of production as compared to thatof other basic industrial materials. For example, in 1989, about 6000 metric tons of polysilicon were produced worldwide for silicon crystal growth, resulting in 3000 tons of crystal produced in the United States, Japan, and Europe. This silicon crystal was converted to approximately 1500 million square inches of wafer, or about 90 million individual wafers used for integrated circuit and discrete device production. For comparison, the annual worldwide production of steel and aluminum amounts to hundreds of thousands of tons.半导体硅材料已成为我们这个时代-硅时代最重要和最有代表性的材料,虽然它的产量还不够大,但其重要性却引人瞩目。例如,在1989年,全球生产约6000吨用于生产单晶的多晶硅,而仅在美国、日本和欧洲就以此生产了3000吨单晶硅。然后,这些单晶硅又转换成了大约150亿平方英吋硅片,或大约9000万片分别用于IC和分立器件的各类硅片,这些硅片的作用可与全球每年成百上千吨的钢铁和铝材相比拟。In spite of its relatively small volume, the impact of silicon production is multiplied manifold by the device and electronic systems that are based on its properties. There have been many attempts to fined improved materials with “better” properties than silicon, but candidates such as sapphire, silicon carbide, diamond and -materials all lack some essential ingredients for manufacturing in quantity . Examples of these missing ingredients include: ease of growing large perfect crystals, freedom from extended and point defects, existence of a native oxide, or other essential properties, many of wich are discussed in this book.尽管它相对量较小,但是硅材料的影响力却很巨大,它通过其后的分立器件和电子系统(the device and electronic system)的固有特性发挥出巨大的倍增效用(multplied manifold)。近来,人们也付出巨大努力去寻找性能优于硅的其它改进型材料(impoved materials),诸如兰宝石((sapphire)、碳化硅(silicon carbide)、金刚石(diamond)以及-族化合物(- materiars),但这些材料都缺乏大生产方面的一些基本要素,这些要素包括:是否易于生长大尺寸的完美单晶(ease of growing large perfect crystal)、产品外延的自由度(freedom from extended)、点缺陷(point defects)、有自氧化物生成(existence of a native oxide)或其它一些基本特性等,这在本手册中将会陆续讨论。Basic information about silicon-how it is made, and its important physical, chamical and mechanical properties-is hard to find,and one of the motives for this volume is to make fundamental information available in handbook form. This also absolves the authors from having to include the relevant papers in their field that were published in the last twenty-four hours.有关硅的一些基础资料-比如如何制备以及它们的一些重要的物理、化学和机械特性一时难于查找,本手册的目的之一是汇编了这些方面的一些有用的基本信息,本手册在出版前的24小时里,作者还是删去了应该包括在其中的相关章节(This also absolves the authors from having to include the relevant papers in their field that were published in the last twenty-four hours.)。Early work in silicon science and technology was excellent, as evidenced by the fact the original crystal growth process is still used in manufacturing today. That process was developed at Bell Laboratories by Teal and Buehler, following the original crystal growth process developed for germanium by Teal and Little. This initial work was done in spite of device engineers who were convinced that polycrystalline material would be adequate for transistor manufacturing.硅材料科学技术的早期工作是非常出色的,很明显的事实是:原始单晶的生长工艺(original crystal growth process)一直沿用到今天。这一工艺是贝尔实验室的Teal和Buehler开发成功的,据此,Teal和Little还开发了锗(Germanium)的原始单晶生长工艺。早期的工作使得设计工程师们(device engineers)感到困惑,因为他们确信多晶材料就能适合于制作晶体管。In the past, there has been only one book on semiconductor silicon technology, by Walt Runyan, formerly with Texas Instruments. Following has lead and inspiration, we have undertaken to produce a work of similar utility, since has original volume has gone out of print. Today it requires ten people to do what he was able to do by himself. In part this is testimony to the development that has occurred in all of these areas, and each chapter of the original work is now a separate discipline. We are fortunate to have excellent contributors for each of the topics discussed here, but we wish to salute Dr. Runyan for his original and enduring contribution to the field.在过去,曾有德洲仪器公司的Walt Runyan 出版过一本有关半导体硅技术方面的书,根据他的启示和灵感(Following his lead and inspiration),我们承担了出版工作,使得他先前的文稿得以出版。而现在,我们却需要十个人来作他自己作过的工作(译者注:本手册的撰稿人共10人),部分说来,这是对过去各方面工作的汇总,现在又把原先的每一章分成了几个章节。我们是幸运的,我们在手册中讨论的每一个题目都有极好的贡献(excellent contribution),但我们还是要向Dr.Runyan在这一领域中已有的和持续的贡献表示敬意。Los Altos,CaliforniaJanuuary 1990 William.C.OMaraHandbook of semiconductor silicon technology Contents(目录)1、 Silicon precursors: Their manufacture and properties(硅原料的制备和特性) Lee.P.Hunt1.0 Introduction(序言)2.0 Precursor manufacture(前期制备)2.1 Metallurgical-grade silicon(MG-Si)(冶金级硅)2.2 Trichlorosilane(三氯氢硅)2.3 Silicon tetrachloride(四氯化硅)2.4 Dichlorosilance(二氯二氢硅)2.5 Silane(硅烷)3.0 Physical properties and critical constants(物理特性和临界常数)3.1 Non-temperature sensitive properties and constant(非温度敏感特性和常数)3.2 Vapor pressure(蒸汽压)3.3 Density (Liquid)(密度)(液态)3.4 Heat capacity (liquid)(热容)(液态)3.5 Heat capacity (gas)(热容)(气态)3.6 Free energy, standard enthalpy, and standard entropy of formation(生成的自由能、标准焓和标准熵)3.7 Enthalpy of vaporization(汽化焓)3.8 Surface tension(表面张力)3.9 Viscosity (gas)(粘度)(气态)3.10 Viscosity(liquid)(粘度)(液态)3.11 Thermal conductivity(gas)(热导率(气态)3.12 Thermal conductivity(liquid)(热导率)(液态)4.0 Safety(安全)4.1 Health hazards(对健康的危害)4.2 Fire and explosion hazards(防火和防爆炸危害)4.3 Material of construction(建筑材料)Appendix(附录)References(参考文献)2、 Polysilicon preparation(多晶硅制备) Leo.C.Rogers1.0 The history of polycrystalline silicon(多晶硅的发展史)1.1 Early and present polysilicon manufacturers(早期及现有的多晶硅制造商)1.2 Semiconductor-grade polycrystalline silicon precursors (半导体级多晶硅的原料)1.2.1 Silica (SiO2)(二氧化硅)1.2.2 Silicones(硅树脂)1.2.3 MG-Si and ferrosilicon(冶金级硅和硅铁)1.2.4 Silicon purity beyond MG-Si(纯度远高于冶金级硅的纯硅)1.2.5 Feedstocks for semiconductor-Grade polysilicon(半导体级多晶硅的原料)1.3 Semiconductor-Grade polysilicon(半导体级多晶硅)1.4 Potpourri of other methods to manufacture polysilicon (制备多晶硅的其它方法集锦)2.0 Polysilicon production technology (most practiced) (多晶硅生产技术)(最常用的方法)2.1 The feedstock system(原料系统)2.2 Polysilicon reactors(多晶硅反应炉)2.2.1 General Bell-jar reactor design(通用型钟罩炉的设计)2.2.2 General Bell-jar reactor operation(通用型钟罩炉的操作)2.3 Reactor operation criteria(反应炉的操作标准)2.4 Deposition objectives for polysilicon(多晶硅的沉积目标) 2.5 Reactor exhaust-gas recovery-general practice (反应炉尾气回收通行惯例)2.6 Reactor exhaust-gas recovery-general design (反应炉尾气回收通用的设计)2.7 Specific reactors exhaust-gas recovery design (特效的反应炉尾气回收设计)2.7.1 Lever-one recovery system(一级回收系统)2.7.2 Lever-two recovery system(二级回收系统)2.7.3 Closed-loop recovery system(闭路回收系统)2.8 Capital and operating costs(投资和运作成本)3.0 Alternative chlorine-based, Semiconductor-Grade, Polysilicon feedstocks(以氯基物为半导体级多晶硅原料的选择)3.1 Silane as a polysilicon feedstocks(以硅烷作为多晶硅原料)3.1.1 Silane puritygrade 6 to 10 for Bell-jar reactor polysilicon(硅烷的纯度对钟罩炉为610级)3.1.2 Silane manufacturing costgrade 4(硅烷的制造成本4级)3.1.3 Silane safetygrade 4 for chlorosilane-to-silane, and 5 for hexafluorosilicic-silane(硅烷的安全性由氯硅烷到硅烷的为4级,以氟硅酸制硅烷的为5级)3.1.4 Silane alternative sourcesgrade 0(硅烷的可选择来源为0级)3.1.5 Silane transportabilitygrade 2(硅烷的运输为2级)3.1.6 Silane storagegrade 4(硅烷的储存为4级)3.1.7 Silane by-products recoverygrade 2(硅烷副产品的回收为2级)3.1.8 Silane by-products usegrade 5 for silane-to-silane; grade 3 for hexafluorosilicic-silane(硅烷副产品的利用由硅烷到硅烷为5级,由氟硅酸到硅烷为3级)3.1.9 Silane deposition rategrade 3(硅烷的沉积速率为3级)3.1.10 Silane constructiongrade 5 for chlorosilane-to-silane; and 3 for hexafluorosilicic-silane(硅烷的建筑由氯硅烷到硅烷为5级,由氟硅酸到硅烷为3级)3.1.11 Silane reactor choicesgrade 5 going to 7(硅烷反应炉的选择57级)3.1.12 Silane electrical energy usagegrade 5/10(硅烷的电能使用5/10级)3.2 Dichlorosilane as a polysilicon feedstock(以SiH2Cl2作为多晶硅的原料)3.2.1 Dichlorosilane puritygrade 7(SiH2Cl2的纯度为7级)3.2.2 Dichlorosilane manufacturing costgrade 6(SiH2Cl2的制造成本为6级)3.2.3 Dichlorosilane safetygrade 3(SiH2Cl2的安全性为3级)3.2.4 Dichlorosilane alternative sourcesgrade 0 (SiH2Cl2可选择来源为0级)3.2.5 Dichlorosilane transportabilitygrade 2 (SiH2Cl2的运输为2级)3.2.6 Dichlorosilane storagegrade 3(SiH2Cl2储存为3级)3.2.7 Dichlorosilane by-products recoverygrade 3(SiH2Cl2 副产品回收为3级)3.2.8 Dichlorosilane by-products usegrade 3(SiH2Cl2副产品的利用为3级)3.2.9 Dichlorosilane deposition rategrade 5(SiH2Cl2的沉积速率为5级)3.2.10 Dichlorosilane construction methodsgrade 5(SiH2Cl2的建筑方式为5级)3.2.11 Dichlorosilane reactor choicesgrade 3(SiH2Cl2的反应炉选择为3级)3.2.12 Dichlorosilane electrical energy usagegrade 5(SiH2Cl2的电能利用为5级)3.3 Trichlorosilane as a polysilicon feedstock (以SiHCl3作为多晶硅原料)3.3.1 Trichlorosilane puritygrade 7 for Bell-jar polysilicon; grade 5 for FBR polysilicon(SiHCl3的纯度对钟罩炉为7级,对FBR炉为5级)3.3.2 Trichlorosilane manufacturing costgrade 7 (SiHCl3的制造成本为7级)3.3.3 Trichlorosilane safetygrade 9 (SiHCl3的的安全性为9级)3.3.4 Trichlorosilane alternative sourcesgrade 10 (SiHCl3的可选择来源为10级)3.3.5 Trichlorosilane transportabilitygrade 9(SiHCl3的运输为9级)3.3.6 Trichlorosilane storagegrade 9(SiHCl3的的储存为9级)3.3.7 Trichlorosilane by-products recoverygrade 9(SiHCl3的副产品的回收为9级)3.3.8 Trichlorosilane by-products usegrade 8(SiHCl3的副产品的利用为8级)3.3.9 Trichlorosilane deposition rategrade 7(SiHCl3的沉积速率为7级)3.3.10 Trichlorosilane construction methodsgrade 5(SiHCl3的的建筑方式为5级)3.3.11 Trichlorosilane reactor choicesgrade 9(SiHCl3反应炉的选择为9级)3.3.12 Trichlorosilane electrical energy usagegrade 4 (SiHCl3的电能使用为4级)3.4 Silicon tetrachloride as a polysilicon feedstock (以SiCl4作为多晶硅的原料)3.4.1 Silicon tetrachloride puritygrade 10 (SiCl4的纯度为10级)3.4.2 Silicon tetrachloride manufacturing costgrade 7 (SiCl4的制造成本为7级)3.4.3 Silicon tetrachloride safetygrade 10 (SiCl4的安全性为10级)3.4.4 Silicon tetrachloride alternative sourcesgrade 9 going to 3(SiCl4的可选择来源为93级)3.4.5 Silicon tetrachloride transportabilitygrade 9(SiCl4的运输为9级)3.4.6 Silicon tetrachloride storagegrade 9(SiCl4的储存为9级)3.4.7 Silicon tetrachloride by-products recoverygrade 10 (SiCl4副产品的回收为10级)3.4.8 Silicon tetrachloride by-products usegrade 9(SiCl4副产品的利用为9级)3.4.9 Silicon tetrachloride deposition rategrade 4(SiCl4的沉积速率为4级)3.4.10 Silicon tetrachloride construction methodsgrade 10(SiCl4的建筑方式为10级)3.4.11 Silicon tetrachloride reactor choicesgrade 9(SiCl4反应炉的选择为9级)3.4.12 Silicon tetrachloride electrical energy usagegrade 1(SiCl4电能的使用为1级)4.0 Alternate polysilicon reactor selection(备用的多晶硅反应器的选择)4.1 Free-space polysilicon reactors(自由空间多晶硅反应器)4.2 Polysilicon FBRs(多晶硅沸腾床反应器)5.0 Evaluation of semiconductor-gade polysilicon(对半导体级多晶硅的评价)6.0 Future of polysilicon(未来的多晶硅)References(参考文献)3、 Crystal growth of silicon(单晶生长) H.Ming Liaw1.0 Introduction(序)2.0 Melt growth theory(熔融生长理论)2.1 Thermodynamic consideration(热力学考虑)2.2 Heat balance in crystal growth(单晶生长中的热平衡)2.3 Crystal growth mechansisms(单晶生长机理)2.4 Mass transport of impurities(杂质的传递)2.5 Constitutional supercooling(结晶过冷现象)3.0 Practical aspect of Cz crystal growth(Cz单晶生长的实践方式)3.1 Crystal pullers(拉晶炉)3.2 Dislocation-free growth(无位错生长)3.3 Growth forms and habits(生长的晶向和结晶特性)3.4 Automatic diameter control(自动化的直径控制)3.5 Doping techniques(掺杂技术)3.6 Variations in radial resistivity(径向电阻率变化)3.7 Oxygen and Carbon in silicon(硅中的氧和碳)3.8 Techniques for control Oxygen(控氧技术)3.9 Control of Carbon contect(碳含量的控制)4.0 Novel Czochraski crystal growth4.1 Semicontinuous and continuous Cz(半连续和连续Cz拉晶)4.2 Magnetic Czochraski (MCz) crystal growth(磁场法Cz单晶生长)4.3 Square ingot growth (方锭生长)4.4 Web and EFG techniques(蹼状硅及EFG技术)4.5 The Float-Zone technique(Fz生长技术)5.0 Trends in silicon crystal growth(硅单晶生长的趋势)6.0 Summary and conclusion(简要总结)Reference(参考文献)4、 Silicon wafer preparation(硅片制备) Richard L.Lane1.0 Introduction(序)1.1 Wafer preparation processes(硅片制备工艺)1.2 Silicon removal principles(硅的清洁处理方法)1.2.1 Mechanical removal(机械处理)1.2.2 Chemical removal(化学处理)1.2.3 Chemical-Mechanical removal(polishing)(机械化学处理)(打磨)2.0 Cryctal shaping(单晶整型)2.1 Cropping(切头尾)2.2 Grinding(滚磨)2.3 Orientation/Identification flats (定向/标识定位面)2.4 Etching(腐蚀)3.0 Wafering(切片)3.1 Historical(历史回顾)3.2 The ID blade(内园切割)3.3 Blade tensioning(切割张力)3.4 Process (工艺)3.4.1 Crystal mounting(晶体安装)3.4.2 Orientation (定向)3.4.3 Blade condition(切割调整)3.4.4 Wafering variables(切片变量)4.0 Edge contouring(倒角,刀口整形)4.1 Background(背景)4.2 Reasons for Edge contouring(倒角的原因)4.2.1 Silicon chips and wafer breakage(切口破损和硅片破裂)4.2.2 Lattice damage(晶格缺陷)4.2.3 Epitaxial edge crown(外延边缘凸起)4.2.4 Photoresist edge bead(光刻时边缘波纹)4.3 Commercial equipment(通用设备)5.0 Laping(研磨)5.1 Background(背景)5.2 Current technology(现有技术)5.3 Wafer grinding(硅片研磨)6.0 Polishing(抛光)6.1 Description of polishing(抛光描述)6.2 Historical background(历史背景)6.3 Current polishing practice(现有抛光实践)6.3.1 Polishing variables(抛光变量)6.3.2 The optimum polishing process(适宜的抛光工艺)6.3.3 Other methods of polishing(抛光的其它方法)7.0 Cleaning(清洗)7.1 Mechanical cleaning(机械清洗)7.2 Chemical cleaning(化学清洗)7.3 Other cleaning methods(其它清洗方法)7.4 Equipment(设备)8.0 Miscellaneous operations(各色各样操作)8.1 Heat treatment(热处理)8.2 Backside damage(背损伤)8.3 Wafer marking(硅片刻标记)8.4 Packaging(包装)9.0 In-process measurements(在线测量)9.1 Wafer specifications and industry standards(硅片的特征参数和工业标准)9.2 Mechanical measurements(机械测量) 9.2.1 Diameter and flat length(直径和定位面长度) 9.2.2 Crystallographic orientation(晶向定向) 9.2.3 Thickness and thickness variation(厚度和厚度偏差) 9.2.4 Flatness(定位面) 9.2.5 Bow and warp(弯曲度和翘曲度0 9.2.6 Edge contour(边缘轮廓) 9.2.7 Surface inspection(表面检测)10.0 Discussion(讨论)Reference(参考文献)5. Silicon epitaxy(硅外延) Rorbet B.Herring1.0 Introduction(序言)1.1 Homoepitaxy and Heterepitaxy(均相外延和异相外延)1.2 Applications of epitaxial layers (外延层的应用)1.2.1 Discrete and power devices(分立器件和功率器件)1.2.2 Integrated circuits(集成电路)1.2.3 Epitaxy for MOS Devices(MOS器件用外延)1.3 Epitaxy as the complement to Ion implantation(外延作为离子注入的补充)2.0 Techniques for silicon epitaxy (硅外延技术)2.1 Chemical vapor deposition(化学汽相沉积)(CVD)2.2 Molecular beam epitaxy(分子束外延)(MBE)2.2.1MBE-process description(分子束外延工艺描述)2.2.2MBE equipment (分子束外延设备)2.3 Liquid phase epitaxy(液相外延)(LPE)2.4 Solid phase regrowth(固相再生长)2.4.1 Regrowth of Amorphous layers(非晶层的再生长)2.4.2 Recrystallization of thin films(薄层单晶再生长)3.0 Surface preparation for silicon eptaxial growth(硅外延生长的表面处理)3.1 Surface cleaning and Oxide removal (表面清洁和氧化除杂)3.1.1 Surface precleans(表面予清洗)3.1.2 Drying the wafers(干燥硅片)3.2 Insitu gas phase cleans(就地汽相清洗)3.2.1 Removal of the surface oxide(表面氧化除杂)3.2.2 Removal of adsorbed water vapor(水汽吸附除杂)3.2.3 Oxide removal(氧化除杂)3.2.4 Carbon on the surface(表面的碳)3.3 Insitu etching(就地腐蚀)4.0 Growth of silicon epitaxy by CVD(CVD硅外延生长)4.1 Growth chemistries(生长的化学过程)4.1.1 Disproportionation(歧化反应)4.1.2 Pyrolytic decomposition(高温分解)4.1.3 Reduction of chlorosilanes (氯硅烷减薄) 4.2 Growth kinetics and mechanisms(生长动力学和生长机制)4.2.1 Kinetics of growth from silane(用硅烷的生长动力学)4.2.2 Kinetics of growth from dichlorosilane(用SiH2Cl2的生长动力学)4.2.3 Kinetics of growth from trichlorosilane and silicon tetrachloride(用SiHCl3和SiCl4的生长动力学)4.3 Nucleation(成核现象)4.3.1 Homogeneous nucleation(同相的成核现象)4.3.2 Heterogeneous nucleation(异相的成核现象)5.0 Dopant incorporation(混合掺杂法)5.1 Intentional dopant incorporation(有意的混合掺杂)5.1.1 Measurements of dopant incorporation(混合掺杂的测量)5.1.2 Effect of temperature(温度的影响)5.1.3 Effect of growth rate(生长速率的影响)5.1.4 Effect of p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论