《有理数加法》教案1.doc_第1页
《有理数加法》教案1.doc_第2页
《有理数加法》教案1.doc_第3页
《有理数加法》教案1.doc_第4页
《有理数加法》教案1.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.3 有理数的加法(一)教学目标知识技能:1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;毛 2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运能力。数学思考:1、正确地进行有理数的加法运算; 2、用数形结合的思想方法得出有理数加法法则。解决问题:能运用有理数加法解决实际问题。情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。教学重点和难点 重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;难点:异号两数如何相加的法则。教学过程【情景设计】我们来看一个大家熟悉的实际问题:足球比赛中进球个数与失球个数是相反意义的量若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)这里,就需要用到正数与负数的加法。下面,我们利用数轴一起来讨论有理数的加法规律。一、负数+负数如果规定向东为正,向西为负,那么一个人向西走2米,再向西走3米,两次共向西走多少米?很明显,两次共向西走了6米.这个问题用算式表示就是:(2)(4)=6.这个问题用数轴表示就是如图1所示:二、负数正数如果向西走2米,再向东走4米, 那么两次运动后 这个人从起点向东走2米,写成算式就是 (2)+4=2。这个问题用数轴表示就是如图2所示:探究活动利用数轴,求以下情况时这个人两次运动的结果:(一)先向东走3米,再向西走5米,物体从起点向( )运动了( )米;(二)先向东走5米,再向西走5米,物体从起点向( )运动了( )米;(三)先向西走5米,再向东走5米,物体从起点向( )运动了( )米。这三种情况运动结果的算式如下 3+(5)= 2; 5+(5)= 0; (5)+5= 0。如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了5米。写成算式就是 5+0=5 或(5)+0= 5。你能从以上7个算式中发现有理数加法的运算法则吗?三、有理数加法法则1.同号的两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值. 互为相反数的两个数相加得零.3.一个数同0相加,仍得这个数。四、例题注意法则的应用,尤其是和的符号的确定!例1 计算 (3)(9); (2)(47)39.分析:解此题要利用有理数的加法法则.解:(1) (3)(9)= (3+9)= 12:(2) (4.7)3.9=(4.73.9)= 08.例2 足球循环赛中,红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。三场比赛中,红队共进4球,失2球,净胜球数为 (+4)+(2)=+(42)=2;黄队共进2球,失4球,净胜球数为 (+2)+(4)= (42)= ( );蓝队共进( )球,失( )球,净胜球数为( )=( )。五、课堂练习1填空:(1)(3)+(5)= ; (2)3(5)= ;(3)5+(3)= ; (4)7(7)= ;(5)8(1)= ; (6)(8)1 = ;(7)(6)+0 = ; (8)0+(2) = ;2计算:(1)(13)+(18); (2)20(14);(3)1.7 + 2.8 ; (4)2.3 + (3.1);(5)()+(); (6)1+(1.5);(7)(3.04)+ 6 ; (8)+().3想一想,两个数的和一定大于每个加数吗?请你举例说明.4. 第18页练习 1、2。课堂练习答案1(1)8; (2)2; (3)2; (4)0; (5)7; (6)7;(7)6; (8)2.2(1)31; (2)7; (3)4.5; (4)0.7; (5)1 ;(6)0 ; (7)2.96; (8).3不一定,例如两个负数的和小于这两个加数.课堂小结1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则今后我们经常要用类似的思想方法研究其他问题。2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。课外作业:第25页1题.课外选做题1判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.2当a = 1.6,b = 2.4时,求a+b和a+(b)的值.3已知a= 8,b= 2. (1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.课外选做题答案1(1)对;(2)错;(3)错;(4)错.2a+b和a+(b)的值分别为0.8、4.3(1)当a、b同号时,a+b的值为10或10;1.3 有理数的加法(二)教学目标 1知识与技能 能运用加法运算律简化加法运算 理解加法运算律在加法运算中的作用,适当进行推理训练 2过程与方法 培养学生的观察能力和思维能力 经历对有理数的运算,领悟解决问题应选择适当的方法 3情感、态度与价值观在数学学习中获得成功的体验教学重点难点 重点:如何运用加法运算律简化运算 难点:灵活运用加法运算律教学过程 情境创设,导入新课 思考 在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来? 那这些加法运算律还适于有理数范围吗?今天,我们一起来探究这个问题知识讲解一、有理数加法的运算律请你计算 30 +(20), (20)+30.通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为: 加法交换律:a + b = b + a 再请你计算一下, 8 +(5) +(4),8 + (5)+(4).通过这两个题计算,可以仍然可以看出它们的结果都为1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变 . 用式子表示为: 加法结合律:(a + b)+ c = a +( b +c) 上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.二、例题例1 计算:16 +(25)+ 24 +(35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(25)+ 24 +(35) = (16 + 24)+ (25)+(35) = 40 +(60) =20.例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?解法1: 91 9191.5 89 91.2 91.3 88.7 88.8 91.8 91.1=905.4.再计算总计超过多少千克 905.49010=5.4.答:总计超过5千克,10袋水泥的总质量是505千克.解法2:略.课堂练习1计算:(1)(7)+ 11 + 3 +(2);(2)3 +(5)+ 12 +(1)+(9);(31)(0.3)+ 1.3 +(0.6)+(3.1)+ 0.2;(4)2第20页练习1、2。3 最小的正整数、绝对值最小的数、最大的负整数的和.3绝对值不大于10的数有几个?它们的和是多少?课后作业第25页第2题,第26页9,10题。课后拓展题1、填空:(1)若a0,b0,那么ab 0(2)若a0,b0,那么ab 0(3)若a0,b0,且ab那么ab 0(4)若a0,b0,且ab那么ab 02计算:(1)13(12)17(18);(2)5.6(0.9)4.4(8.1)+(1);(3)(4)4.4(8)11(0.1);(5)3飞机的飞行高度是2200米,上升500米,又下降

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论