




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2节圆与方程 知识链条完善 考点专项突破 经典考题研析 知识链条完善把散落的知识连起来 教材导读 1 在平面直角坐标系中 如何确定一个圆呢 提示 当圆心位置与半径大小确定后 圆就唯一确定了 因此 确定一个圆的最基本要素是圆心和半径 2 圆的一般方程中为何限制d2 e2 4f 0 3 直线与圆的位置关系有哪些 提示 相离 相切 相交 4 两圆相交时 公共弦所在直线方程与两圆的方程有何关系 提示 两圆的方程作差消去二次项得到的关于x y的二元一次方程 就是公共弦所在直线的方程 知识梳理 1 圆的定义在平面内 到定点的距离等于定长的点的轨迹叫做圆 2 圆的方程 x a 2 y b 2 r2 1 圆的定义与方程 2 点a x0 y0 与 c的位置关系 1 ac r 点a在圆外 x0 a 2 y0 b 2 r2 3 直线与圆的位置关系把直线的方程与圆的方程组成的方程组转化为一元二次方程 其判别式为 设圆心到直线的距离为d 圆的半径为r 位置关系列表如下 5 圆与圆的位置关系 o1 o2半径分别为r1 r2 d o1o2 重要结论 1 两圆相交时 公共弦所在直线的方程设圆c1 x2 y2 d1x e1y f1 0 圆c2 x2 y2 d2x e2y f2 0 若两圆相交 则有一条公共弦 由 得 d1 d2 x e1 e2 y f1 f2 0 方程 表示圆c1与c2的公共弦所在直线的方程 2 若点m x0 y0 在圆x2 y2 r2上 则过m点的圆的切线方程为x0 x y0y r2 夯基自测 b 解析 设圆心为 0 m 由已知得圆的方程为x2 y m 2 m2 又因为圆过点 3 1 则9 1 m 2 m2 解得m 5 故圆的方程为x2 y 5 2 52 即x2 y2 10y 0 c 3 2015温州十校联考 对任意的实数k 直线y kx 1与圆c x2 y2 2x 2 0的位置关系是 a 相离 b 相切 c 相交 d 以上三个选项均有可能 c 5 圆x2 y2 x 2y 20 0与圆x2 y2 25相交所得的公共弦长为 考点专项突破在讲练中理解知识 考点一 圆的方程 答案 1 d 答案 2 b 3 圆c通过不同的三点p k 0 q 2 0 r 0 1 已知圆c在点p处的切线斜率为1 则圆c的方程为 答案 3 x2 y2 x 5y 6 0 反思归纳 1 求圆的方程 一般采用待定系数法 若已知条件与圆的圆心和半径有关 可设圆的标准方程 若已知条件没有明确给出圆的圆心和半径 可选择圆的一般方程 2 在求圆的方程时 常用到圆的以下几个性质 圆心在过切点且与切线垂直的直线上 圆心在任一弦的垂直平分线上 考点二 直线与圆的位置关系 反思归纳 1 圆的切线方程的求法 代数法 设切线方程为y y0 k x x0 与圆的方程组成方程组 消元后得到一个一元二次方程 然后令判别式 0进而求得k 几何法 设切线方程为y y0 k x x0 利用点到直线的距离公式表示出圆心到切线的距离d 然后令d r 进而求出k 2 弦长的求法 代数方法 将直线和圆的方程联立方程组 消元后得到一个一元二次方程 在判别式 0的前提下 利用根与系数的关系 根据弦长公式求弦长 圆与圆的位置关系 考点三 答案 1 b 2 1 反思归纳 判断圆与圆的位置关系时 一般不用代数法 利用几何法的关键是判断圆心距 o1o2 与半径的关系 即时训练 1 已知圆c1 x2 y2 2mx m2 4 圆c2 x2 y2 2x 2my 8 m2 m 3 则两圆的位置关系是 a 相交 b 内切 c 外切 d 相离 2 若 o x2 y2 5与 o1 x m 2 y2 20 m r 相交于a b两点 且两圆在点a处的切线互相垂直 则线段ab的长度是 答案 1 d 2 4 与圆有关的轨迹问题 考点四 解 1 设ap的中点为m x y 由中点坐标公式可知 p点坐标为 2x 2 2y 因为p点在圆x2 y2 4上 所以 2x 2 2 2y 2 4 故线段ap中点的轨迹方程为 x 1 2 y2 1 2 设pq的中点为n x y 在rt pbq中 pn bn 设o为坐标原点 连接on 则on pq 所以 op 2 on 2 pn 2 on 2 bn 2 所以x2 y2 x 1 2 y 1 2 4 故线段pq中点的轨迹方程为x2 y2 x y 1 0 反思归纳 求与圆有关的轨迹方程时 常用以下方法 1 直接法 根据题设条件直接列出方程 2 定义法 根据圆的定义写出方程 3 几何法 利用圆的性质列方程 4 代入法 找出要求点与已知点的关系 代入已知点满足的关系式 备选例题 例3 1 若圆 x 1 2 y 3 2 9上的相异两点p q关于直线kx 2y 4 0对称 则k的值为 2 圆 x 2 2 y2 5关于原点 0 0 对称的圆的方程为 解析 1 圆是轴对称图形 过圆心的直线都是它的对称轴 已知圆的圆心为 1 3 由题设知 直线kx 2y 4 0过圆心 则k 1 2 3 4 0 解得k 2 2 因为所求圆的圆心与圆 x 2 2 y2 5的圆心 2 0 关于原点 0 0 对称 所以所求圆的圆心为 2 0 半径为 故所求圆的方程为 x 2 2 y2 5 答案 1 2 2 x 2 2 y2 5 2 求y x的最大值和最小值 3 求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年二手车买卖合同及车辆维修保养服务
- 2025版跨国公司外籍员工入职及培训服务合同
- 2025年土地经营权转移代理费合同模板
- 2025年汽车租赁公司汽车租赁公司租赁车辆租赁保证金退还服务合同
- 2025版砌体工程特种施工分包合同示范文本
- 2025版海绵城市土建工程承包合同示范
- 2025材料预付款高性能材料预付款合作协议
- 2025年大数据公司创始股东合作协议及数据处理安全协议
- 2025版送餐服务合同违约责任规范范本
- 2025年度矿山开采水土保持验收技术服务协议
- 房地产样板间装饰工程重点难点及措施
- 康复科护理金点子
- 工地油库安全管理办法
- 全球治理转型-洞察及研究
- 高等数学课程教学中遇到的问题及解决对策
- (高清版)DB32∕T 4001-2025 公共机构能耗定额及计算方法
- 电力物资打包方案(3篇)
- 2025至2030中国味精行业发展趋势分析与未来投资战略咨询研究报告
- 你的样子就是教育的样子-一位校长对教师行为规范的深度思考建议收藏
- 中医治疗泌尿系结石课件
- 屠宰场入股合同协议书
评论
0/150
提交评论