




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基础知识- 圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;点与圆的位置关系:当,点在圆外当=,点在圆上当,点在圆内(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为 ,则有;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含; 当时,为同心圆。注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点应用 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论5.1空间直角坐标系1、点M对应着唯一确定的有序实数组,、分别是P、Q、R在、轴上的坐标2、有序实数组,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标。5.2空间两点间的距离公式1、空间中任意一点到点之间的距离公式提高与扩展-关于圆与方程的知识点整理一、标准方程1.求标准方程的方法关键是求出圆心和半径待定系数:往往已知圆上三点坐标,例如教材例2利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2.特殊位置的圆的标准方程设法(无需记,关键能理解)条件 方程形式圆心在原点 过原点 圆心在轴上 圆心在轴上 圆心在轴上且过原点 圆心在轴上且过原点 与轴相切 与轴相切 与两坐标轴都相切 二、一般方程1.表示圆方程则2.求圆的一般方程一般可采用待定系数法:如教材例43.常可用来求有关参数的范围三、点与圆的位置关系1.判断方法:点到圆心的距离与半径的大小关系点在圆内;点在圆上;点在圆外2.涉及最值:(1)圆外一点,圆上一动点,讨论的最值(2)圆内一点,圆上一动点,讨论的最值 思考:过此点作最短的弦?(此弦垂直)四、直线与圆的位置关系1.判断方法(为圆心到直线的距离)(1)相离没有公共点(2)相切只有一个公共点(3)相交有两个公共点这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围.2.直线与圆相切(1)知识要点基本图形主要元素:切点坐标、切线方程、切线长等问题:直线与圆相切意味着什么?圆心到直线的距离恰好等于半径(2)常见题型求过定点的切线方程切线条数点在圆外两条;点在圆上一条;点在圆内无求切线方程的方法及注意点i)点在圆外如定点,圆:,第一步:设切线方程第二步:通过,从而得到切线方程特别注意:以上解题步骤仅对存在有效,当不存在时,应补上千万不要漏了!如:过点作圆的切线,求切线方程.答案:和ii)点在圆上1) 若点在圆上,则切线方程为会在选择题及填空题中运用,但一定要看清题目.2) 若点在圆上,则切线方程为碰到一般方程则可先将一般方程标准化,然后运用上述结果. 由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是判断点与圆的位置关系,得出切线的条数.求切线长:利用基本图形,求切点坐标:利用两个关系列出两个方程3.直线与圆相交(1)求弦长及弦长的应用问题垂径定理及勾股定理常用弦长公式:(暂作了解,无需掌握)(2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内.(3)关于点的个数问题例:若圆上有且仅有两个点到直线的距离为1,则半径的取值范围是_. 答案:4.直线与圆相离会对直线与圆相离作出判断(特别是涉及一些参数时)五、对称问题1.若圆,关于直线,则实数的值为_.答案:3(注意:时,故舍去)变式:已知点是圆:上任意一点,点关于直线的对称点在圆上,则实数_.2.圆关于直线对称的曲线方程是_.变式:已知圆:与圆:关于直线对称,则直线的方程为_.3.圆关于点对称的曲线方程是_.4.已知直线:与圆:,问:是否存在实数使自发出的光线被直线反射后与圆相切于点?若存在,求出的值;若不存在,试说明理由.六、最值问题方法主要有三种:(1)数形结合;(2)代换;(3)参数方程1.已知实数,满足方程,求:(1)的最大值和最小值;看作斜率(2)的最小值;截距(线性规划)(3)的最大值和最小值.两点间的距离的平方2.已知中,点是内切圆上一点,求以,为直径的三个圆面积之和的最大值和最小值.数形结合和参数方程两种方法均可!3.设为圆上的任一点,欲使不等式恒成立,则的取值范围是_. 答案:(数形结合和参数方程两种方法均可!)七、圆的参数方程,为参数,为参数八、相关应用1.若直线(,),始终平分圆的周长,则的取值范围是_.2.已知圆:,问:是否存在斜率为1的直线,使被圆截得的弦为,以为直径的圆经过原点,若存在,写出直线的方程,若不存在,说明理由. 提示:或弦长公式. 答案:或3.已知圆:,点,设点是圆上的动点,求的最值及对应的点坐标.4.已知圆:,直线:()(1)证明:不论取什么值,直线与圆均有两个交点;(2)求其中弦长最短的直线方程.5.若直线与曲线恰有一个公共点,则的取值范围.6.已知圆与直线交于,两点,为坐标原点,问:是否存在实数,使,若存在,求出的值;若不存在,说明理由.九、圆与圆的位置关系1.判断方法:几何法(为圆心距)(1)外离 (2)外切(3)相交 (4)内切(5)内含2.两圆公共弦所在直线方程圆:,圆:,则为两相交圆公共弦方程.补充说明:若与相切,则表示其中一条公切线方程;若与相离,则表示连心线的中垂线方程.3圆系问题(1)过两圆:和:交点的圆系方程为()说明:1)上述圆系不包括;2)当时,表示过两圆交点的直线方程(公共弦)(2)过直线与圆交点的圆系方程为(3)有关圆系的简单应用(4)两圆公切线的条数问题相内切时,有一条公切线;相外切时,有三条公切线;相交时,有两条公切线;相离时,有四条公切线十、轨迹方程(1)定义法(圆的定义):略(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式轨迹方程.例:过圆外一点作圆的割线,求割线被圆截得的弦的中点的轨迹方程.分析:(3)相关点法(平移转换法):一点随另一点的变动而变动 动点 主动点特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.例1.如图,已知定点,点是圆上的动点,的平分线交于,当点在圆上移动时,求动点的轨迹方程.分析:角平分线定理和定比分点公式.例2.已知圆:,点,、是圆上的两个动点,、呈逆时针方向排列,且,求的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 入职课件模板
- 夯实基础管理之道
- 光伏培训课件
- 你身边的5个人课件
- 湖北小池滨江高级中学2025-2026学年高三物理第一学期期末统考模拟试题
- 中小学生航空航天科普知识竞赛试题库及答案
- 2025中央一号文件应知应会试题库和答案
- 产程全程观察与规范化护理指南
- 企业生产安全培训会议课件
- 企业春节前安全教育培训课件
- 湖南省长沙市长郡梅溪湖中学2024-2025学年上学期八年级入学考试数学试卷
- 小学语文课本1至6年级古诗词大全
- 2024塑料术语规范
- 华中师范大学经济与工商管理学院807经济学基础历年考研真题汇编合集
- 阴道镜检查图谱
- 医院培训课件:《静脉血栓栓塞症(VTE)专题培训》
- 2024-2029年中国直接半导体激光器行业市场现状供需分析及市场深度研究发展前景及规划战略投资分析研究报告
- 2024年水域救援安全及基础理论知识考试题库(附含答案)
- GB/T 43933-2024金属矿土地复垦与生态修复技术规范
- 2023年考研政治真题(含答案及解析)
- 叉车考试题库模拟试题大全及答案
评论
0/150
提交评论