全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学新课标八年级上册因式分解知识点总结一、 相关定义1.因式分解:把一个多项式化成几个_的形式,叫做把这个多项式因式分解2.公因式:一个多项式每项都含有的_因式,叫做这个多项式各项的公因式。二、 因式分解方法1.提公因式法:ma+mb+mc=m(a+b+c)2.公式法:- =(a+b)(a-b) +2ab+= - 2ab+= + =(a+b)( ab +) - =(a - b)(+ ab +)3.分组分解法4.十字相乘法:+ (p+q)+pq=(x+p)(x+q)三、 一般步骤:“一提”、“二套”、“三分组”、“四十字”、 “五检查”。注意:因式分解一定要分解到_为止。四、 因式分解方法详解(一)提公因式法例题 练习小结公因式确定方法:1、系数是整数时取各项最大公约数。2、相同字母(或多项式因式)取最低次幂3、系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。(二)公式法例题练习小结:1、公式中的字母可代表一个数、一个单项式或一个多项式。2、选择公式的方法:主要看项数,若多项式是二项式可考虑平方差公式;若多项式是三项式,可考虑完全平方公式。3、完全平方公式要注意正负号。(三)分组分解法例题 练习小结:将多项式分组后提公因式进行因式分解;将多项式分组后运用公式进行因式分解。(四)十字相乘法形如+ (p+q)+pq=(x+p)(x+q)形式的多项式,可以考虑运用此种方法方法:常数拆成两个因数p和q,这两数的和p+q为一次项系数 + (p+q)+pq + (p+q)+pq=(x+p)(x+q)例题练习小结:特别要注意正负号综合练习总结:一、因式分解要素:结果必须是整式结果必须是积的形式结果是等式二、分解因式应注意: 不丢字母不丢常数项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- ospf协议书传输太慢
- ntp时间同步协议书
- 厕所修建简单协议书
- 阿里 竟业协议书
- 2025年RCEP项下矿产资源原产地规则应用考核试卷
- 申报 服务 协议书
- 烧结检修技术协议书
- 深圳股权转让协议书模板
- 2025年工程建筑行业工程建筑技术创新研究报告及未来发展趋势预测
- 2025年航运物流行业智能船舶管理技术报告
- 基坑施工冬季施工技术及管理方案
- 2025中国铁塔集团广西分公司招聘22人易考易错模拟试题(共500题)试卷后附参考答案
- 学堂在线 军事理论 章节测试答案
- 科学用脑与高效学习课件
- 脑卒中后吞咽障碍患者进食护理(2023年中华护理学会团体标准)
- 大学生职业生涯发展报告
- 桥梁检测车设备安全操作规程
- 斑点叉尾鮰鱼种培育技术
- 九年级物理期中复习课件(人教)
- 电子元器件焊接规范标准
- 工程洽商变更单
评论
0/150
提交评论