毕业设计说明书.doc

基于Inventor对绕线机的传动装置进行三维建模与运动仿真【机械毕业设计word+CAD图纸】【答辩通过】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:458377    类型:共享资源    大小:2.17MB    格式:ZIP    上传时间:2015-07-20 上传人:小*** IP属地:福建
45
积分
关 键 词:
基于 inventor 对于 绕线机 传动 装置 进行 三维 建模 运动 仿真 机械 毕业设计 word cad 图纸 答辩 通过
资源描述:

摘  要

本课题是基于电子行业,纺织行业的绕线工序,传统行业中大部分依靠手工绕线对人员依赖程度高,导致与绕线工艺相关的绕线行业存在一些无法逾越的问题,首先在电子行业,激烈的竞争以及国内人力成本的逐步提高,导致一些企业利润相当微薄,再次由于磁环绕线工作枯燥乏味,工人流动性极大,从而导致绕线企业缺乏熟练的绕线工,容易产生误差,不能保证产品的高精度,例如在仪表加工行业中,手工绕制的线圈产品,误差相差三圈会导致一起的测量精度会降低0.01,使得产品不能达到万分之五的精准这直接用想到企业的生产效率与生产质量,因此开发自动绕线机成为制造业的一个新的机遇。

本课题主要针对绕线机的传动部分元件,利用Inventor对绕线机的传动装置零件进行三维实体建模,在进行绕线机的传动装置设计时,首先考虑的传动平稳,运动可靠问题,在使用过程中不能存在任何的安全隐患问题,使用简便、容易操作。

运用Inventor软件对设计出线机的传动装置零件进行装配,检查干涉情况,并运动仿真分析。

关键词:Inventor绕线机; 三维建模; 运动仿真


Abstract

This topic is based on the electronics industry, textile industry during the process, the traditional industry rely on hand to personnel during most of the dependent degree is high, cause and winding process related coiling industry has some not insurmountable problem, first in the electronics industry, the fierce competition and domestic the gradual improvement of the human cost, leading some corporate profits are lean, once again, because they can work during boring, workers liquidity is great, leading to coiling enterprise shortage of skilled work during, easy to produce the error, can't guarantee products of high precision, for example in the instrument processing industry, the coil products made by hand, are three laps will lead to the error of measurement accuracy together will reduce 0.01, make product can't reach five over ten thousand of the precise directly with the thought of enterprise production efficiency and production quality, and so develop automatic winding machine be manufacturing a new opportunity.

This subject mainly for coiling machine of the transmission part components, the use of coiling machine Inventor of the transmission parts for 3 d entity modeling, in coiling machine transmission device design, the first consideration of smooth transmission, sports and reliable, in use process can't exist any safety concerns, easy to use, easy to operate.

Using software to design qualification machine Inventor of the transmission parts assembly, check the intervene problem, and motion simulation analysis.

Key words: Inventor software;  Autodesk maya;  motion simulation。



目  录

摘要…………………………………………………………ⅠABSTRACT…………………………………………………………………………………………  Ⅱ

1前言………………………………………………………………………………………………… 1

2总体方案设计……………………………………………………………………………………… 1

    2.1曲柄摇杆三维建模………………………………………………………………………… 2

2.2连杆模型绘制……………………………………………………………………………… 3

2.3圆盘曲柄…………………………………………………………………………………… 3

2.4制动爪……………………………………………………………………………………… 4

2.5止动爪的模型构造………………………………………………………………………… 6

2.6棘轮的模型绘制…………………………………………………………………………… 6

2.7轴承与螺母的绘制………………………………………………………………………… 8

2.8箱体的建模过程…………………………………………………………………………… 10

3零件的装配………………………………………………………………………………………… 12

3.1装配相关技术……………………………………………………………………………… 13

3.2创建新零部件……………………………………………………………………………… 13

3.2.1结果类型控制…………………………………………………………………………13

3.2.2文件名称和位置………………………………………………………………………13

3.2.3默认BOM表结构………………………………………………………………………13

3.2.4虚拟零部件……………………………………………………………………………13

4运动仿真…………………………………………………………………………………………… 13

        基本概况……………………………………………………………………………………13

5润滑与封闭………………………………………………………………………………………… 14

    5.1 润滑…………………………………………………………………………………………14

    5.2封闭…………………………………………………………………………………………14

    5.3安全………………………………………………………………………………………… 14

6结论……………………………………………………………………………………………………15

参考文献…………………………………………………………………………………………………16

致谢………………………………………………………………………………………………………17



前  言

绕装机是金属导线生产中最后环节封装,完成家用电器,电机及工业电机线圈绕制的电工专用设备.

它主要目的是把生产出的金属导线缠绕成卷,便于运输。由于是生产的最后环节,所以一定要保证设备不会对产品构成破坏,也要求有记数系统以便于统计产量和方便销售。国外绕线机的线嵌设备已由电器自动控制发展到微机控制.有些还具备关键部位的状态监视和故障诊断功能.然而我国在这类设备的控制方面还基本上采用传统的电器控制,生产效率低,线圈绕制的质量差,属于半手工半自动的操作方式。


内容简介:
中国地质大学长城学院毕业设计(论文)任务书 学生姓名 王晶轩 学号 05208321 班 级 08 机制 3 班 指导教师 杨淑华 职称 工程师 单 位 中国地质大学长城学院 毕业设计(论文)题目 基于 Inventor对绕线机的传动装置 进行 三维建模与运动仿真 毕业设计(论文)主要内容和要求: 设计一个绕线机。设计时应满足如下基本要求: 1) 设计结构合理,简便可靠。 2) 对绕线机的零件用 Inventor 进行三维实体建模。 3) 对零件进行虚拟装配。 4) 对绕线机进行运动仿真。 毕业设计(论文)主要参考资料: Inventor 实体设计教程 Inventor 运动仿真与分析 机械设计 机械原理 毕业设计(论文)应完成的主要工作: 1)对绕线机结构进行调查分析,确定设计方案。 2)对绕线机的零件用 Inventor 进行三维实体建模。 3)对零件进行虚拟装配。 4)对绕线机进行运动仿真。 毕业设计(论文)进度安排: 序号 毕业设计各阶段内容 时间安排 备注 1 查阅资料,完成开题报告 2011.12.10 2011.12.20 nts2 结合课题进行外文资料阅读,完成外 文翻译 2011.12.21 2011.12.31 3 学习相关的知识,熟悉有关的资料,完成文献综述 2012.1.1 2012.1.20 4 设计绕线机方案 2012.1.21 2012.2.1 5 设计绕线机的结构草图 2012.2.2 2012.2.10 6 绘制绕线机的结构总图 2012.2.11 2012.3.20 7 设计并绘制绕线机的图形 2012.3.21 2012.4.20 8 整理资料,编写设计说明书; 准备答辩 2012.4.21 2012.5.5 课题信息: 课题性质: 设计 论文 课题来源: 教学 科研 生产 其它 发出任务书日期: 指导教师签名: 年 月 日 教研室意见: 教研室主任签名: 年 月 日 学生签名: nts 中国地质大学长城学院 本科毕业设计外文资料翻译 系 别: 工程技术系 专 业: 机械设计制造及其自动化 姓 名: 王晶轩 学 号: 05208321 2011 年 12 月 28 日 nts 外文资料翻译译文 矩形绕线机的张力控制 摘 要 本文介绍的是设计张力控制系统的测试,尽量减小张力的变化,其中包括流体动力占用肌肉手臂,流体蓄电池肌肉。首先,确定 该 模型和现有张紧系统。之后,在模拟上进行理论的分析。仿真结果表明,电线由于 速度的变化产生 的长度变化的导致循环紧张波动。该 模型 的 张力传感器验证了预测。成功设计的关键是消除张力的变化。我们建议增加一项线平机,其中包括一个蓄电池和拉紧装置,取代传统的气缸与流体供电肌肉累加器。仿真结果表明,新的原型系统几乎增加了一倍的绕线速度和承受的张力波动的能力。 关键词: 张力控制 : 绕线机 : 矩形线圈 。 一引言 每年在澳大利亚要制造数以千计的变压器,连同电厂、变电站和电力线路,配电变压器为全国的商业及住宅提供电能。变压器制造 涉及绕组线圈生产。这些线圈通常由一对铜线在匝数之间夹上的绝缘纸层制成。它们通常是圆形或长方形。 在线圈绕组上必须保持一致的张力。线圈的形状对所采用的由拉紧产生的张力产生重大影响。对于一个圆形线圈的张力不会变化显着,但矩形线圈则不同。作为一个矩形线圈,在送丝线圈上加快速度,减速的线圈会缠绕在机轴上。如图 1 所示,这个速度的变化是由不断变化的线的长度导致。在圆线圈的情况下这不会有问题,因为在线圈上导线的接触点是固定的。 图 1:速度的变化导致绕组上线长度变化 在机器上的导线和不同的主轴负荷紧张的结果各不相同,导 致过度的力的变化和机械nts振动。这反过来可能会导致变化中的线圈电线交叉。当这些问题出现,纠正起来时很费时间的。此外,工厂的产能线圈,在工厂的生产能力线圈是在工厂的总体能力的制约因素,因此任何对线圈的输出中断都会影响到全厂。当今市场上普通线材的张紧设置,是运行在约 5 米 /秒到 30 米 /秒之间。我们通常的绕线速度超过 10 米 /秒,公司的目标是 0.45 毫米至 4 毫米的线达到至少 20 米 /秒的速度。 本文进一步考察了张力的波动问题,并且在高速的绕线矩形线圈取得一致的张力关系。在下面的部分问题的作了说明,为现有的可用技术做了综述。 二背景 如图 2 所示,现有的卷绕系统使用感受到张紧垫,阀芯的电线被安装到其住房垂直并且该线是通过导丝、导轮,然后到绕线机。张力的控制室通过的固定或松开钳子来实现。 图 2:现有电线的安装和张力的设置 毛毡垫是最简单,最常用的线张力控制的方法之一。 图 2 照片显示主要组成部分和工作原理。上面的配置使用克钳套用挤压力量的感觉垫。该线是穿过感觉垫,因此应用的感觉垫一些力也适用于电线。在操作中,运动线路迟缓或张力的创建,对牙釉质的感觉垫丝摩擦表面的摩擦。机器操作线程的电线通过指导和滑轮和调整锁模力手动和直观地表现 出来。其优点是:简单,随时可用,便宜,适应任何运行速度。缺点也是显而易见的。垫磨损很快,导致紧张局势的损失,该作用力仅和一般的速度无关,必须加强和更换频繁,直观的张力设置不允许良好的控制和没有线轴形状补偿。 三模型识别 nts导线从线轴穿过的张力装置,通过机器,并上矩形线圈。该系统简化,如图 1 所示的只是一个固定的馈送点,那里的张力被应用,旋转矩形代表筒子或线圈。 理想的运行速度为 1000 转。给出了一个线速 10 - 30 米 /秒取决于在一特定时刻线圈的大小。图显示了由筒子长方形生产线速度的变化。 图 3:线速度 的变化 图显示了线加速度的变化,这也可以通过该行或图形的速度衍生斜坡看到。 图 4:线加速度变化 线路路径长度的变化,从固定的馈点到缠线点,如图 5 所示。 图 5:线长度的变化 nts四原型系统设计 图中的系统集成了一个相对较新的气动装置称为流体肌肉。流体肌肉由无纺布和柔性材料制造而成,在空气压力下运作,在膨胀的压力下向横向和纵向扩展。预置压力决定的最高和最低的力量也将适用于特定的收缩。肌肉非常类似于传统的气缸,除了它有一个非常快速的反应,并没有什么不同高度动态弹簧。它还行为紧张和不压缩,可以适用于除传统 的气缸相同直径的 10 倍以上的力量。肌肉控制舞蹈手臂的动作,并采取了释放导线的力道。这种压力设置适应所需的电线一系列张力变化。 图 6:流体动力舞蹈手臂肌肉 图 7:流体动力蓄电池肌肉 肌肉的流体动力蓄电池原型系统如图所示的气缸使用的蓄电池,是与肌肉所取代,操作大致是相同的。 信号以 mV 显示,张力范围大概在 75N 到 85N 之间,用于测试的线直径为 1.5mm,在信号嘈杂的情况下,张力的变化可以清楚地观察到。 nts五实验结果及分析 实验使用上述反应构建原型系统进行了观察。 流体技术舞蹈手臂肌肉:低速的手臂最初 有反应,但在时间过长便急剧抽搐,如预期的一样不均匀地运动。导线似乎比没有手臂肌肉震动更剧烈。第一层的绕组已经从最初的地方向内约 300 毫米。在高速时手臂没有回应,只是均匀的立场振动。 流体肌肉蓄电池技术:动力蓄电池的肌肉试验得出了以下结果:在低速累加器根本没有回应。变压力没有显着差异;在高速时累加器没有回应。由于没有从蓄电池整个系统的振动响应,使电线和增加穿越振动。 在用张力传感器搜集数据之前,蓄电池如图所示。最大和最小张力分别约为 62 N和 46 N。 图 8:没有累加器的张力传感器的输出 图 9:有累 加器的张力传感器的输出 张力传感器在使用时收集的累加器数据如图所示。最高和最低张力分别约为 43 N和 37 N。 六结论 矩形线圈是配电变压器的重要组成部分。由于线圈形状,线圈的绕组线张力产生波动。nts这些波动导致电线破损,线圈尺寸不一致,多余的机器磨损,限制对卷绕速度和变压器故障。从我们现有张力系统的研究,虽然发现流体肌肉累加器是最合适的选择,但是不是非常满足我们的要求。由于目前的张力系统,不是一个合适的补偿接口,决定向扁平丝机的基础上进行实验和仿真。因此,平线中使用的气瓶发生肌肉的机器成为可行性建议。新的绕线机将增加几乎一倍当前卷绕速度,估计每台机器每年可节省约 59100 美元。新的张力系统,可以达到到 500 N 的恒张力,而不会产生大量的热量,从而克服了当前摩擦的相关问题。 nts 外文原文 Tension Control of a Winding Machine for Rectangular Coils ABSTRACT Abstract-This paper introduces the design and testing of tension control prototype systems to minimise these tension variations, which includes a fluidic muscle powered take up arm, a fluidic muscle wire accumulator and felt pad. First the model and their limitations for existing tensioning systems are identified. Then, they are theoretically analysed in simulations. The simulation results show that the acceleration and deceleration of the wire due to the changing wire path length causes a cyclic tension fluctuation. An online tension sensor verified the predictions of the model. The key for a successful design is to remove tension variations. We propose to add a wire flattening machine which includes an accumulator and tensioning device, and replace the conventional pneumatic cylinder powering the accumulator with a fluidic muscle. The simulation shows that the new prototype system almost doubles the winding speed with a tolerable tension fluctuation. Keywords Tension control,: Winding Machine,: Rectangular Coil。 I. INTRODUCTION Thousands of transformers are manufactured each year in Australia. In conjunction with power stations, substations, and power lines, the distribution transformers provide power to both commercial and residential applications right across the country. The manufacture of transformers involves the production of windings or coils. These coils are generally made up of a number of turns of copper wire in between layers of insulation paper. They are usually either round or rectangular. During coil winding a consistent tension is required on the wire. The shape of the coil being wound has a significant impact on the quality of the tension applied by the tensioner. For a round coil the tension does not vary significantly during one revolution, but a rectangular coil causes the wire tension to fluctuate. As a rectangular coil is being wound, the speed of the wire feeding onto the coil accelerates and decelerates as the coil turns on the winding machine shaft. This is shown in figure 1 below. This speed variation is due to the constantly changing wire path length. In the case of a round coil this is not a problem because the point of contact of the wire on the coil is fixed. nts Figure 1: Acceleration due to changing wire path length during winding The varying tension results in the loading on the machine traverse and main shaft to vary, leading to excessive forces and machine vibrations. This in turn can cause wire cross overs and variations in the coil. When these problems occur, it is a time consuming task to remedy. In addition, the coil production capacity of the plant is the limiting factor in the plants overall capacity, so any interruptions to the output of coils limits the whole factory. Common wire tensioning devices on the market today, only operate at around 5 m/s for heavy wire gauges and up to 30 m/s for very fine wire. Our regularly winds in excess of 10 m/s and is aiming to achieve at least 20 m/s for the entire wire range of 0.45 mm to 4 mm. This paper further investigates the tension fluctuation problem and to achieve a consistent wire tension while winding a rectangular coil at high speed. In the following section issues of the winding processes are described, and the available techniques for tensing are reviewed. II. BACKGROUND The existing winding system shown in figure 2 uses felt pads for tensioning. The spool of wire to be wound is mounted into its housing vertically and the wire is fed up through the wire guide and felt pads, over the guide pulley and then to the winding machine. The tension is varied by tightening or loosening the large g-clamp. Figure 2: Existing wire mounting and tension setup Felt pads are one of the simplest and most commonly usedwire tensioning methods. The photo in figure 2 shows the main components and principle of operation. The configuration shown above uses a g-clamp to apply a squeezing force to the felt pads. The wire is passed through the felt pads and hence some of the force applied to the felt pads is also applied to the wire. In operation, the wire travels through these felt pads and the retardation or tension force is created by the friction of the surface of the ntsenamel coated wire rubbing on the felt pads. The machine operator threads the wire through the guides and pulleys and adjusts the clamping force manually and intuitively. The advantages are: simple and readily available; inexpensive; adaptive to any operating speed. The disadvantages are also obvious. The Pads wear out quickly leading to loss of tension, the applied force is only generally independent of speed, need to be tightened and replaced frequently, intuitive tension setting does not allow good quality control and no compensation for bobbin shape. III. MODEL IDENTIFICATION The wire travels from the spool through the tensioning device, over the machine traverse, and onto the rectangular coil. The system was simplified as shown in figure 1 to just be a fixed feed point, where the tension is applied, and a rotating rectangle representing the bobbin or coil. The desired operating speed is 1000 RPM. This gives a wire speed of 10 - 30 m/s depending on the coil size at a particular instant in time. Figuer3 shows the variation of the wire velocity produced by the rectangular shape of the bobbin. Figure 3: The wire velocity variation Figure 4 shows the variation of the wire acceleration, which can also be seen by the slope of the line or derivative of the velocity graph. Figure 4: The wire acceleration variation The wire path length variation, from the fixed feed point to the wind on point, is shown in figure 5 below. nts Figure 5: The wire length variation IV. PROTOTYPE SYSTEM DESIGN The system in figure 6 incorporates a relatively new pneumatic device called a fluidic muscle. The muscle is made of a woven, flexible material and operates under air pressure. Under pressure it expands laterally and contracts longitudinally. A preset pressure determines the maximum and minimum forces it will apply for a specific contraction. The muscle is very similar to a conventional pneumatic cylinder, except it has a very fast response and is highly dynamic, not unlike a spring. It also acts in tension and not compression, and can apply 10 times more force than a conventional pneumatic cylinder of the same diameter. The muscle controls a dancing arm which moves to take up and release the slack in the wire. This pressure is set to accommodate the range of wire tensions required. Figure 6: Fluidic muscle powered dancing arm Figure 7: Fluidic muscle powered accumulator The fluidic muscle powered accumulator prototype system is shown in figure 7, where the pneumatic cylinder used in the accumulator is replaced with a muscle, otherwise the operation is the same as outlined previously. While the signal was noisy, the tension variations can be clearly observed. The signal shown is in mV, which translates into a tension range of approximately 74 N to 83 N for the 1.5 mm wire used in the test. ntsV. EXPERIMENT RESULT AND ANALYSIS The tests were carried out to observe the response using the above constructed prototype system. Fluidic Muscle Powered Dancing Arm: At low speed the arm responded initially but operated in long sharp jerks, not smooth side to side movements as expected. The wire appeared to vibrate more with the dancing arm, than without. At the end of winding one layer the resting position of the arm moved from its initial position inward approximately 300 mm. At high speed the arm did not respond, but just vibrated about a mean position. Fluidic Muscle Powered Accumulator: The trial of a large muscle powered accumulator gave the following results:At low speed the accumulator did not appear to respond at all. Varying the pressure made no significant difference, other than pull the wire through the felt pads. At high speed the accumulator did not respond. With no response from the accumulator the whole system vibrated, making the wire and traverse vibrations increase. The tension sensor data collected before the accumulator was used is shown in figure 8. The maximum and minimum tension is approximately 62 N and 46 N respectively. Figure 8: Plot of tension sensor output without the accumulator The tension sensor data collected when using the accumulator is shown in figure 9. The maximum and minimum tension is approximately 43 N and 37 N respectively. Figure 9: Plot of tension sensor output with the accumulator VI. CONCLUSIONS Rectangular coils are important part of distribution transformers. When winding these coils the wire tension fluctuates due to the coil shape. These fluctuations lead to wire breakages, inconsistent coil ntsdimensions, excess machine wear, limit on the maximum winding speed and transformer failure in the field. From our comprehensive research into existing tensioning systems, none of them are ideally suited to fulfil our requirements although the fluidic muscle accumulator was found to be the most suitable option to develop as a compensator. As the current tensioning system, felt pads, are not suitable for interfacing with a compensator, the decision to add a wire flattening machine is made based on out experiment and simulation results. The intuitive process of setting the tension using a g-clamp does not allow consistency, therefore affecting quality control. Therefore, a wire flattening machine recommended with the feasibility of using the muscle in place of the cylinder. The new winding machine will almost double the current winding speed and result in a big annual saving estimated about $59,100 for each machine. The inclusion of a new tensioning system can apply up to 500 N constant tension force without generating a large amounts of heat, and overcomes the current problems associated with friction. nts 中国地质大学长城学院 本 科 毕 业 设 计 题目 基于 Inventor 对绕线机的传动装置进行三维建模与运动仿真 系 别 工程技术系 专 业 机械设计制造及自动化 学生姓名 王 晶 轩 学 号 05208321 指导教师 杨 淑 华 职 称 工程师 2012 年 4 月 26 日 nts 中国地质大学长城学院 毕业 设计 开题报告 学生 姓名 王晶轩 学号 05208321 专业 班级 08 机制三班 指导教师 杨淑华 职称 工程师 单 位 中国地质大学长城学院 课题性质 设计 论文 课题来源 科研 教学 生产 其它 毕业 设计 题目 基于 Inventor 对绕线机的传动装置进行三维建模与运动仿真 一 、 选题的目的与意义 本课题是基于电子行业,纺织行业的绕线工序,传统行业中大部分依靠手工绕线对人员依赖程度高,导致 与绕线工艺相关的绕线行业存在一些无法逾越的问题,首先在电子行 业,激烈的竞争以及国内人力成本的逐步提高,导致一些企业利润相当微薄,再次由于磁环绕线工作枯燥乏味,工人流动性极大,从而导致绕线企业缺乏熟练的绕线工,容易产生误差,不能保证产品的高精度,例如在仪表加工行业中,手工绕制的线圈产品,误差相差三圈会导致一起的测量精度会降低0.01,使得产品不能达到 万分之五的精准 这直接用想到企业的生产效率与生产质量, 因此开发自动绕线机成为制造业的一个 新的 机遇 。 本课题就是在这样的背景下对 绕线机的传动装置进行研究,对传动部分的零件进行三 维实体 建模并运动仿真 ,寻求一个合理的设计方案 。 二 、研究现状 及发展方向 2008 年 2 月,榆次经纬机电设备厂
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:基于Inventor对绕线机的传动装置进行三维建模与运动仿真【机械毕业设计word+CAD图纸】【答辩通过】
链接地址:https://www.renrendoc.com/p-458377.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!