


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
COMSOL周期性边界条件的应用在将真实的物理问题转化为仿真模型时,为了通过有限的计算资源获得尽可能高的计算精度,模型简化是必要的。模型简化的前提是所模拟的物理问题具有结构、材料属性及边界条件的对称性或均匀性,以此为基础,可通过特定的方程及边界条件建立模型,例如降维方程,镜像/周期性/旋转对称边界条件,或根据工程经验将某些计算域简化为边界等等。当处理空间或时间上具有周期性的物理问题时,采用周期性边界条件(Periodic/Cyclic Condition),可将复杂结构的模拟简化为周期单元,在不失精确度的前提下,大大降低计算量。COMSOL提供的周期性边界条件包括四种类型: 连续性周期边界(Continuity),指在源和目标边界上的场值相等; 反对称周期边界(Antiperiodicity),源和目标边界上场值符号相反; 弗洛奎特周期性边界(Floquet periodicity),源和目标边界上场值相差一个位相因子,位相因子由波矢和边界相对距离确定。Continuity和Antiperiodicity边界可以认为是Floquet periodicity边界在位相分别为0和情况下的两个特例。 循环对称性边界(Cyclic Symmetry),源和目标边界上场值相差一个位相因子,位相因子由计算域所对应的扇形角和角向模式数决定。以下是几个典型应用:1. 微纳光学领域内的光子晶体(Photonic Crystal)、表面等离子体激元(Surface Plasmon)阵列结构及超材料(Metamaterial),这几种结构均由空间上周期性重复的散射体构成,当计算透射率及能带结构时,常常可采用Floquet perioidcity边界将结构简化。超材料能带分析Metamaterial.mph2. 作为压电传感器件的声表面波器件(Surface Acoustic Wave, SAW)的本征频率问题计算。压电声表面波器件的共振频率下的位移场(左)和电势(右)分布才Acoustics Module/Industrial Models/Saw_gas_sensor3. 飞机、轮船、风力发电机中的涡轮机,或是旋转电机结构往往具有旋转对称性,在进行电磁场或振动模态分析时,可采用Cyclic Symmerty类型周期性边界简化。叶轮的振动模态Structural Mechanics Module/Tutorial Models/impeller值得注意的是,周期性条件的引入会导致模型的非线性增强,这常常会导致计算的收敛性问题。为了提高计算收敛性,在网格剖分时,需要注意使互为周期性的两个边界上网格完全一致。在COMSOL中可先剖分周期性边界对中的一个边界,然后复制网格(Copy mesh)来实现两个边界上网格的一致
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业绿色技术研发与可持续发展目标的关系
- 职业教育课程任务论的实践指向与内涵
- 有色业碳足迹管理的策略及实施路径
- 体教融合下高校体育困境与发展路径探讨
- 数字心盛与青少年心理健康的纵向关系分析
- 跨国企业并购的协同效应与优化路径
- 宿州市第四人民医招聘笔试真题2024
- 基于Python的大学生心理健康与学业成绩关系分析
- 滨州市无棣县城乡公益性岗位招聘笔试真题2024
- 2024年甘肃省三支一扶招募考试真题
- 世界古代史(二) 讲义 高三统编版2019必修中外历史纲要下册一轮复习
- 消防月课件:2024年21起典型火灾案例及消防安全知识专题培训
- 2024年湖北省初中学业水平考试地理试卷含答案
- DB35T 2067-2022 锅炉用固体废弃物燃料性能评价规则
- OQC培训资料教学课件
- 2022年中华护理学会输液连接装置安全管理专家共识解读
- 木制品加工厂应急预案
- 中医院护理质量评价标准与方法
- 2025年中考历史复习专项训练:世界现代史选择题100题(原卷版)
- 电影音乐欣赏智慧树知到期末考试答案章节答案2024年华南农业大学
- 2024北京西城区高二(下)期末数学试题及答案
评论
0/150
提交评论