说明书打印版.pdf

基于Solidworks的抓物机器车机构设计及运动仿真 【优秀含20张CAD图纸+SW三维建模+仿真+机械设备全套课程毕业设计】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:(预览前20页/共48页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:461522    类型:共享资源    大小:15.63MB    格式:RAR    上传时间:2015-07-27 上传人:QQ14****9609 IP属地:陕西
45
积分
关 键 词:
基于solidworks 机器 机构设计 运动仿真 三维建模 机械设备 毕业设计 基于Solidworks的抓物机器车机构设计及运动仿真 机械设备全套课程毕业设计
资源描述:

抓物机器车机构设计及运动仿真

基于Solidworks的抓物机器车机构设计及运动仿真 【优秀含20张CAD图纸+SW三维建模+仿真+机械设备全套课程毕业设计】

【带任务书+中期检查表+开题报告+进度计划表+答辩ppt+外文翻译】【47页@正文14800字】【详情如下】【需要咨询购买全套设计请加QQ1459919609 】.bat

任务书基于Solidworks的抓物机器车机构设计及运动仿真.doc

中期检查表.doc

开题报告.doc

毕设进度表.doc

答辩.pptx

设计论文.docx

A0总装图.dwg

A33.dwg

a33333.dwg

SW三维建模

上车身.DWG

下车身.DWG

丝杆.DWG

丝杆螺母.DWG

中间板.DWG

仿真视频

其他的零件图.dxf

固定架.DWG

外文翻译

大齿轮.DWG

套筒.DWG

支板1.DWG

支板2.DWG

爪子.DWG

螺杆.DWG

螺母-螺杆.DWG

装配体1.DWG

设计文档

说明书打印版.pdf

转臂.DWG

轴啊.DWG

连杆.DWG

连杆盘.DWG

任务书

题    目: 基于Solidworks的抓物机器车机构设计及运动仿真

  2013年12月13日

一、毕业设计(论文)的内容

   机器人是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。

   本课题通过应用CAD软件技术对抓物机器车进行结构设计,使其能实现抓物运动,可以在地形复杂或恶劣、危险的环境里完成物体的搬运或者障碍的清除等工作。另一方面是进一步提升专业技能,为踏上工作岗位做好准备。本课题的主要工作内容有以下几点:

1、收集关于抓物机器车产品的相关知识,了解现有抓物机器车产品的结构;

2、熟悉抓物机器车的工作原理及过程;

3、查阅相关资料,熟悉机械产品设计、机械设计基础、机械零件的加工工艺、工程力学、工程制图等与本毕业设计课题相关的知识内容;

4、熟练掌握计算机辅助设计软件(Solidworks);

5、对抓物机器车设计方案进行详细规划及分析,反复对方案进行论证,逐步进行修改及优化;

6、利用计算机及Solidworks软件完成抓物机器车的结构设计;

7、利用计算机及Solidworks软件完成抓物机器车相关机构的各种参数计算和分析;

8、完成抓物机器车相关零件材料的选用及其工艺分析;

9、利用计算机及Solidworks软件完成抓物机器车产品零件及装配部件的3D和2D工程图的绘制;

10、利用计算机及Solidworks 软件完成抓物机器车的运动仿真;

二、毕业设计(论文)的要求与数据

   本毕业设计课题需要掌握机械产品设计、机械设计基础、机械零件加工工艺、工程力学、工程制图等相关知识及计算机辅助设计技能。本课题需要提交的数据资料及要求主要有以下几点:

1、设计方案的规划及分析对比必须在毕业设计说明书中体现出来;

2、抓物机器车产品结构设计要合理,提交合理、完整的3D模型;

3、抓物机器车相关机构的各种参数计算和分析(如抓取零件的最大重量、最大最小尺寸、抓取夹紧力及机械手受力情况的等),并提供结果;

4、零部件装配正确合理,并提供干涉分析结果;

5、2D工程图要整洁规范,必须符合国家标准,并提交规范完整图纸;

6、机构运动仿真及零件拆、装过程视频动画分辨率不小于720*480 px,并提交AVI格式视频文件;

7、外文资料翻译和毕业设计说明书(论文)的内容及字符要符合“毕业设计任务书”的要求;

8、毕业设计说明书的格式必须符合 “2014年毕业设计说明书统一格式”的要求;

9、各个文件资料所需填写的时间必须符合“2014年毕业设计(论文)管理办法”的要求;

10、答辩PPT课件能清晰体现毕业设计课题的设计思路,并且版面简介;

三、毕业设计(论文)应完成的工作

1、完成开题报告及进度计划表的撰写;

2、完成中期检查表的填写;

3、完成二万字左右的毕业设计说明书(论文);在毕业设计说明书(论文)中必须包括详细的300-500个单词的英文摘要;

4、独立完成与课题相关,不少于四万字符的指定英文资料翻译(附英文原文);

5、完成抓物机器车产品零件及装配部件的3D和2D工程图的绘制;

6、完成工作量折合A0图纸3张以上,其中必须包含两张A3以上的计算机绘制图纸;

7、完成零件拆、装过程及运动仿真视频动画的制作;

8、完成答辩PPT课件的制作;

四、应收集的资料及主要参考文献

[1]曹惟庆等.机构设计[M].北京:机械工业出版社,1993

[2]成大先.机械设计手册[M].北京:化学工业出版社,2004

[3]《机械设计手册》联合编写组.机械设计于册-下册[M].北京:化学工业出版社,1989

[4]张彪,叶军等.一种丝杆螺母机构型机械手的设计[J].中国西部科技,2010,(15):31-32.

[5]孙恒,陈作模.机械原理(第六版)[M].北京:高等教育出版社,2001

[6]詹友刚. SolidWorks快速入门教程(2012中文版)[M].北京:机械工业出版社,2004

[7]ASHBY, M. F. (1998). Engineering Materials (2nd ed.) (2 vols.)/Volume 1 - An Introduction  to t heir Properties  and  Applications  Engineering_Materials_2E_VOLUME1

五、试验、测试、试制加工所需主要仪器设备及条件

所需主要仪器设备及条件如下:

1、计算机一台

2、CAD设计软件(SolidWork)

摘  要

很多地方是我们人类没法进去的,因为其中的一些东西已经对我们造成了生命的威胁,但我们又有必须进去的理由。在这种场合下,机械就能为我们解决这些问题,因为它可以代替我们进行一些危险操作,用来取代人力来工作。我们设计的抓物机器车是在机械化,自动化生产过程中发展起来的一种将机械手和搬运车联系为一体的产品。使其能抓物运动,可以在地形复杂或恶劣、危险的环境里替人完成物体的搬运或者障碍的清除等工作。

抓物机器车的设计主要是通过无线通信来控制小车的前进、后退或者转弯,并由螺杆转动,带动螺杆上的螺母上下移动,再通过连杆结构实现抓爪的闭合,从而实现抓物动作。丝杆竖直放置,转臂固定在丝杆螺母上,步进电机带动丝杆旋转,螺母会上下移动,转臂也会上下移动,也就是机械手上下移动,满足了机械手降下抓物,升高移动物体的情况。机械手的转动,在由齿轮带动固定丝杆的中间件转动而实现的。

关键词:机器车;抓物;丝杆

Abstract

Many things that we humans can not go , because some of these things have been a threat to our life , but the reason we have to go in there . In this case , our machinery will be able to solve these problems. Because it can replace us doing some dangerous operation , to replace manpower to work. Because it can replace us some dangerous operation, to replace manpower to work. We have designed the Grasping machine car that developed in the mechanization and automation of the production process and the robot van combined into one product. So that it can catch things exercise can help people complete the removal of an object or obstacle clearance work in complex terrain or harsh, dangerous environment.

Grasping machine car designed primarily controlled by a wireless communication car forward, backward, or turn. by the screw rotates, driven to move up and down the screw on the nut, and then realize gripper closure through the link structure to realize grasping objects actions . Screw placed vertically, and the arm is fixed on  screw nut, stepper motor driven rotary screw, nut meeting next move, the arm will move up and down, which is under the robot moves down to meet the robot grasping objects, elevated movement of the object. Turn the robot, driven by fixed-gear screw rotation middleware

implementation.

Key words: machine car; grasping objects; screw

目    录

引言1

1  设计方案2

1.1 设计内容2

1.2 设计目的2

1.3 方案的选择2

2  机械手的设计3

2.1 抓手结构的设计3

2.2 爪片的设计5

2.3 螺杆的设计7

2.3.1确定螺纹中径8

2.3.2螺杆的强度计算9

2.3.3螺母螺纹牙的强度计算9

2.4 连杆盘的设计10

2.5 套筒的设计11

2.5.1套筒的尺寸11

2.5.2螺栓的选择11

2.5.3螺纹连接的防松13

3  转臂的设计13

3.1 受力分析13

3.2 转臂的尺寸计算14

3.3 螺栓的设计15

3.3.1螺栓组结构设计15

3.3.2螺栓受力分析15

4  滑动丝杆的设计16

4.1 螺纹牙型的选择16

4.2 螺距选择16

4.3 丝杆直径的确定16

4.4 螺杆的强度计算17

4.5 螺母螺纹牙的强度计算17

4.6 丝杆的长度18

4.7 丝杆螺母的传动形式18

4.8 丝杆的固定19

4.9 轴承的选择19

4.10 固定板的设计21

4.10.1固定板的结构22

4.10.2固定架的固定22

5  转盘的设计23

5.1 中间板的设计23

5.2 键的选择25

5.3 齿轮的设计25

5.3.1选定齿轮类型,精度等级,材料及模数25

5.3.2按齿面接触疲劳强度设计26

5.3.3按齿根弯曲疲劳强度设计27

5.3.4几何尺寸计算27

5.4 轴的设计28

6  车身的设计30

6.1 上车身的设计30

6.2 下车身的设计31

6.3 支板的设计35

6.3.1支板的结构35

6.3.2尺寸计算35

6.3.3支板的连接36

6.3.4轮子孔的设计36

7  solidworks的建模和仿真37

8  总结38

谢  辞39

参考文献40

引言

随着社会的进步,社会的分工也越来越细,特别是在现代化的生产中,有的人每天就只能做着同一件事,或者是拧同个部位的某个螺母,或者是接着同一个地方的线头,就像电影《摩登时代》中所演的,由于老是做同一个动作,身体相同的部位得不到休息,于是开始产生了各种职业病。于是人们强烈的希望能有什么东西能代替自己工作而自己不用那么的难受。于是机器人就被发明了出来,并替人完成那些很枯燥、单调、危险的工作。而且,机器人的发明大大的提高了工作效率,提高了工业的发展,为更多的人提供了机会。

机器人的出现,使人们摆脱了那些繁琐、危险的工作。一般的,在有危险,对人体有害的场合,你总能看到他们的身影。如喷漆行业,油漆发出的气味很难闻,那是有毒气体,闻多了会对人体造成难以想象的伤害;还有电焊的场合也是对人眼睛的伤害也很大,也是有了专门用来焊接的机器人。这样的地方很多,在工业里已经屡见不鲜了。特别是在汽车和工程机械行业里,喷漆和焊接那是必不可少的。也正是这些工作对汽车行业的不可或缺,近几年来,国内生产的工业机器人大多是用于服务汽车行业的,也正因为这样,汽车工业的发展也推动了机器人的增长。

在一些对灰尘要求很严的重要场合或者实验室中,一旦灰尘的量超过了标准,就会有废品的出现。例如要在 10级洁净室中制造的电脑重要器件。按国际标准,10级洁净室就是要在一立方英尺内不得出现超过10个以上的直径大于0.5微米的尘埃。100级洁净室就是在一立方英尺内不得出现100个同样大小的尘埃。可就是想进入100级洁净室,工作人员也要换上特制的装备才可以进去,而且,在进去之前的5个小时都不可以使用化妆品或者吸烟等,这条件可见很难做到了。所以10级洁净室也只能由机器来完成了,想进去,条件太苛刻了。

而有些场合,由于被环境的限制,如有放射性物质,被有害气体包围等,我们很难进去,也没法找里面的东西出来研究。于是特制的抓物机器车就很有必要设计出来。

这次设计是基于三维软件Solidworks设计的。该软件的功能很强大,组件也很多。 Solidworks是现在最主流的三维CAD解决方案,因为他具有了功能强大、易学易用、技术创新等特点。 而且SolidWorks可以提供不同的设计方案、减少了设计过程中的错误以便提高产品质量。对工程师和设计者来说,SolidWorks 不仅提供如此强大的功能,操作更是简单方便、易学易用。

1 设计方案

1.1 设计内容

因为是要进行比较精密的抓取物体,所以采用无线通信技术实现对机器车的控制。通过无线接通电机,电机驱动轮子来实现小车的前进、后退与转向。而在小车的上面则是抓物机械手的部件。要实现机械手的上下移动还有一定范围的转动,还有爪片的自由张合。

参考文献

[1]  濮良贵,纪名刚.机械设计(第八版)[M].北京:高等教育出版社,2005

[2]  成大先.机械设计手册[M].北京:化学工业出版社,2004

[3]  《机械设计手册》联合编写组.机械设计于册-下册[M].北京:化学工业出版社,1989

[4]  张彪,叶军等.一种丝杆螺母机构型机械手的设计[J].中国西部科技,2010,(15):31-32.

[5]  孙恒,陈作模.机械原理(第七版)[M].北京:高等教育出版社,2005

[6]  詹友刚. SolidWorks快速入门教程(2012中文版)[M].北京:机械工业出版社,2004

[7]  单辉祖. 材料力学 (第三版)[M].北京:高等教育出版社

[8]  哈尔滨工业大学理论力学教研室.材料力学(第七版)[M].北京:高等教育出版社

[9]  范崇洛.机械加工工艺学.东南大学出版社,2009

[10] ASHBY,M.F..An Introduction to their Properties and Applications  Engineering_Materials_2E_VOLUME1 Engineering Materials (2nd ed.) (2 vols.)/Volume 1 (1998)

[11]  胡兆国.机械加工基础.西南交大出版社,2007

[12]  傅水根.机械制造工艺学基础.清华大学出版社,2011

[13]  冯辛安.机械制造装备设计.机械工业出版设,2004

[14]  王春福.机床夹具设计手册.上海科学技术出版社,2000

[15]  冯道.机械零件切削加工工艺与技术标准实用手册




内容简介:
编号: 毕业设计 (论文 )外文翻译 ( 原 文) 院 (系): 机电工程学院 专 业: 机械设计制造及其自动化 学生姓名: 韦子亮 学 号: 1000110130 指导教师单位: 桂林电子科技大学 姓 名: 彭晓楠 职 称: 副教授 2014 年 5 月 23 日 ntsDesign of machine elements The principles of design are, of course, universal. The same theory or equations may be applied to a very small part, as in an instrument, or, to a larger but similar part used in a piece of heavy equipment. In no ease, however, should mathematical calculations be looked upon as absolute and final. They are all subject to the accuracy of the various assumptions, which must necessarily be made in engineering work. Sometimes only a portion of the total number of parts in a machine are designed on the basis of analytic calculations. The form and size of the remaining parts are designed on the basis of analytic calculations. On the other hand, if the machine is very expensive, or if weight is a factor, as in airplanes, design computations may then be made for almost all the parts. The purpose of the design calculations is, of course, to attempt to predict the stress or deformation in the part in order that it may sagely carry the loads, which will be imposed on it, and that it may last for the expected life of the machine. All calculations are, of course, dependent on the physical properties of the construction materials as determined by laboratory tests. A rational method of design attempts to take the results of relatively simple and fundamental tests such as tension, compression, torsion, and fatigue and apply them to all the complicated and involved situations encountered in present-day machinery. In addition, it has been amply proved that such details as surface condition, fillets, notches, manufacturing tolerances, and heat treatment have a market effect on the strength and useful life of a machine part. The design and drafting departments must specify completely all such particulars, must specify completely all such particulars, and thus exercise the necessary close control over the finished product. As mentioned above, machine design is a vast field of engineering technology. As such, it begins with the conception of an idea and follows through the various phases of design analysis, manufacturing, marketing and consumerism. The following is a list of the major areas of consideration in the general field of machine design: Initial design conception; Strength analysis; Materials selection; Appearance; Manufacturing; Safety; Environment effects; Reliability and life; Strength is a measure of the ability to resist, without fails, forces which cause stresses and strains. The forces may be; Gradually applied; Suddenly applied; Applied under impact; Applied with continuous direction reversals; Applied at low or elevated temperatures. If a critical part of a machine fails, the whole machine must be shut down until a repair is made. Thus, when designing a new machine, it is extremely important that critical parts be made strong enough to prevent failure. The designer should determine as precisely as possible the nature, ntsmagnitude, direction and point of application of all forces. Machine design is mot, however, an exact science and it is, therefore, rarely possible to determine exactly all the applied forces. In addition, different samples of a specified material will exhibit somewhat different abilities to resist loads, temperatures and other environment conditions. In spite of this, design calculations based on appropriate assumptions are invaluable in the proper design of machine. Moreover, it is absolutely essential that a design engineer knows how and why parts fail so that reliable machines which require minimum maintenance can be designed. Sometimes, a failure can be serious, such as when a tire blows out on an automobile traveling at high speeds. On the other hand, a failure may be no more than a nuisance. An example is the loosening of the radiator hose in the automobile cooling system. The consequence of this latter failure is usually the loss of some radiator coolant, a condition which is readily detected and corrected. The type of load a part absorbs is just as significant as the magnitude. Generally speaking, dynamic loads with direction reversals cause greater difficulties than static loads and, therefore, fatigue strength must be considered. Another concern is whether the material is ductile or brittle. For example, brittle materials are considered to be unacceptable where fatigue is involved. In general, the design engineer must consider all possible modes of failure, which include the following: Stress; Deformation; Wear; Corrosion; Vibration; Environmental damage; Loosening of fastening devices. The part sizes and shapes selected must also take into account many dimensional factors which produce external load effects such as geometric discontinuities, residual stresses due to forming of desired contours, and the application of interference fit joint. Mechanical properties of materials The material properties can be classified into three major headings: (1) physical, (2) chemical, (3) mechanical Physical properties Density or specific gravity, moisture content, etc., can be classified under this category. Chemical properties Many chemical properties come under this category. These include acidity or alkalinity, react6ivity and corrosion. The most important of these is corrosion which can be explained in laymans terms as the resistance of the material to decay while in continuous use in a particular atmosphere. Mechanical properties Mechanical properties include in the strength properties like tensile, compression, shear, torsion, impact, fatigue and creep. The tensile strength of a material is obtained by dividing the maximum load, which the specimen bears by the area of cross-section of the specimen. This is a curve plotted between the stress along the This is a curve plotted between the stress along the Y-axis(ordinate) and the strain along the X-axis (abscissa) in a tensile test. A material tends to change or changes its dimensions when it is loaded, depending upon the ntsmagnitude of the load. When the load is removed it can be seen that the deformation disappears. For many materials this occurs op to a certain value of the stress called the elastic limit Ap. This is depicted by the straight line relationship and a small deviation thereafter, in the stress-strain curve (fig.3.1) . Within the elastic range, the limiting value of the stress up to which the stress and strain are proportional, is called the limit of proportionality Ap. In this region, the metal obeys hookess law, which states that the stress is proportional to strain in the elastic range of loading, (the material completely regains its original dimensions after the load is removed). In the actual plotting of the curve, the proportionality limit is obtained at a slightly lower value of the load than the elastic limit. This may be attributed to the time-lagin the regaining of the original dimensions of the material. This effect is very frequently noticed in some non-ferrous metals. Which iron and nickel exhibit clear ranges of elasticity, copper, zinc, tin, are found to be imperfectly elastic even at relatively low values low values of stresses. Actually the elastic limit is distinguishable from the proportionality limit more clearly depending upon the sensitivity of the measuring instrument. When the load is increased beyond the elastic limit, plastic deformation starts. Simultaneously the specimen gets work-hardened. A point is reached when the deformation starts to occur more rapidly than the increasing load. This point is called they yield point Q. the metal which was resisting the load till then, starts to deform somewhat rapidly, i. e., yield. The yield stress is called yield limit Ay. The elongation of the specimen continues from Q to S and then to T. The stress-strain relation in this plastic flow period is indicated by the portion QRST of the curve. At the specimen breaks, and this load is called the breaking load. The value of the maximum load S divided by the original cross-sectional area of the specimen is referred to as the ultimate tensile strength of the metal or simply the tensile strength Au. Logically speaking, once the elastic limit is exceeded, the metal should start to yield, and finally break, without any increase in the value of stress. But the curve records an increased stress even after the elastic limit is exceeded. Two reasons can be given for this behavior: nts The strain hardening of the material; The diminishing cross-sectional area of the specimen, suffered on account of the plastic deformation. The more plastic deformation the metal undergoes, the harder it becomes, due to work-hardening. The more the metal gets elongated the more its diameter (and hence, cross-sectional area) is decreased. This continues until the point S is reached. After S, the rate at which the reduction in area takes place, exceeds the rate at which the stress increases. Strain becomes so high that the reduction in area begins to produce a localized effect at some point. This is called necking. Reduction in cross-sectional area takes place very rapidly; so rapidly that the load value actually drops. This is indicated by ST. failure occurs at this point T. Then percentage elongation A and reduction in reduction in area W indicate the ductility or plasticity of the material: A=(L-L0)/L0*100% W=(A0-A)/A0*100% Where L0 and L are the original and the final length of the specimen; A0 and A are the original and the final cross-section area. Quality assurance and control Product quality is of paramount importance in manufacturing. If quality is allowed deteriorate, then a manufacturer will soon find sales dropping off followed by a possible business failure. Customers expect quality in the products they buy, and if a manufacturer expects to establish and maintain a name in the business, quality control and assurance functions must be established and maintained before, throughout, and after the production process. Generally speaking, quality assurance encompasses all activities aimed at maintaining quality, including quality control. Quality assurance can be divided into three major areas. These include the following: Source and receiving inspection before manufacturing; In-process quality control during manufacturing; Quality assurance after manufacturing. Quality control after manufacture includes warranties and product service extended to the users of the product. Source and receiving inspection before manufacturing Quality assurance often begins ling before any actual manufacturing takes place. This may be done through source inspections conducted at the plants that supply materials, discrete parts, or subassemblies to manufacturer. The manufacturers source inspector travels to the supplier factory and inspects raw material or premanufactured parts and assemblies. Source inspections present an opportunity for the manufacturer to sort out and reject raw materials or parts before they are shipped to the manufacturers production facility. The responsibility of the source inspector is to check materials and parts against design specifications and to reject the item if specifications are not met. Source inspections may include many of the same inspections that will be used during production. Included in these are: Visual inspection; Metallurgical testing; Dimensional inspection; Destructive and nondestructive inspection; nts Performance inspection. Visual inspections Visual inspections examine a product or material for such specifications as color, texture, surface finish, or overall appearance of an assembly to determine if there are any obvious deletions of major parts or hardware. Metallurgical testing Metallurgical testing is often an important part of source inspection, especially if the primary raw material for manufacturing is stock metal such as bar stock or structural materials. Metals testing can involve all the major types of inspections including visual, chemical, spectrographic, and mechanical, which include hardness, tensile, shear, compression, and spectr5ographic analysis for alloy content. Metallurgical testing can be either destructive or nondestructive. Dimensional inspection Few areas of quality control are as important in manufactured products as dimensional requirements. Dimensions are as important in source inspection as they are in the manufacturing process. This is especially critical if the source supplies parts for an assembly. Dimensions are inspected at the source factory using standard measuring tools plus special fit, form, and function gages that may required. Meeting dimensional specifications is critical to interchangeability of manufactured parts and to the successful assembly of many parts into complex assemblies such as autos, ships, aircraft, and other multipart products. Destructive and nondestructive inspection In some cases it may be necessary for the source inspections to call for destructive or nondestructive tests on raw materials or p0arts and assemblies. This is particularly true when large amounts of stock raw materials are involved. For example it may be necessary to inspect castings for flaws by radiographic, magnetic particle, or dye penetrant techniques before they are shipped to the manufacturer for final machining. Specifications calling for burn-in time for electronics or endurance run tests for mechanical components are further examples of nondestructive tests. It is sometimes necessary to test material and parts to destruction, but because of the costs and time involved destructive testing is avoided whenever possible. Examples include pressure tests to determine if safety factors are adequate in the design. Destructive tests are probably more frequent in the testing of prototype designs than in routine inspection of raw material or parts. Once design specifications are known to be met in regard to the strength of materials, it is often not necessary to test further parts to destruction unless they are genuinely suspect. Performance inspection Performance inspections involve checking the function of assemblies, especially those of complex mechanical systems, prior to installation in other products. Examples include electronic equipment subcomponents, aircraft and auto engines, pumps, valves, and other mechanical systems requiring performance evaluation prior to their shipment and final installation. nts编号: 毕业设计 (论文 )外文翻译 ( 原 文) 院 (系): 机电工程学院 专 业: 机械设计制造及其自动化 学生姓名: 韦子亮 学 号: 1000110130 指导教师单位: 桂林电子科技大学 姓 名: 彭晓楠 职 称: 副教授 2014 年 5 月 23 日 nts编号: 毕业设计 (论文 )外文翻译 (译文) 院 (系): 机电工程学院 专 业: 机械设计制造及其自动化 学生姓名: 韦子亮 学 号: 1000110130 指导教师单位: 桂林电子科技大学 姓 名: 彭晓楠 职 称: 副教授 2014 年 5 月 23 日 nts编号: 毕业设计 (论文 )外文翻译 (译文) 院 (系): 机电工程学院 专 业: 机械设计制造及其自动化 学生姓名: 韦子亮 学 号: 1000110130 指导教师单位: 桂林电子科技大学 姓 名: 彭晓楠 职 称: 副教授 2014 年 5 月 23 日 nts 机器零件的设计 相同的理论或方程可应用在一个一起的非常小的零件上,也可用在一个复杂的设备的大型相似件上,既然如此,毫无疑问,数学计算是绝对的和最终的。他们都符合不同的设想,这必须由工程量决定。有时,一台机器的零件全部计算仅仅是设计的一部分。零件的结构和尺寸通常根据实际考虑。另一方面,如果机器和昂贵,或者质量很重要,例如飞机,那 么 每一个零件都要设计计算。 当然,设计计算的目的是试图预测零件的应力和变形,以保证其安全的带 动负载,这是必要的,并且其也许影响到机器的最终寿命。当然,所有的计算依赖于这些结构材料通过试验测定的物理性能。国际上的设计方法试图通过从一些相对简单的而基本的实验中得到一些结果,这些试验,例如结构复杂的及现代机械设计到的电压、转矩和疲劳强度。 另外,可以充分证明,一些细节,如表面粗糙度、圆角、开槽、制造公差和热处理都对机械零件的强度及使用寿命有影响。设计和构建布局要完全详细地说明每一个细节,并且对最终产品进行必要的测试。 综上所述,机械设计是一个非常宽的工程技术领域。例如,从设计理念到设计分析的每一个阶段, 制造,市场,销售。以下是机械设计的一般领域应考虑的主要方面的清单: 最初的设计理念 受力分析 材料的选择 外形 制造 安全性 环境影响 可靠性及寿命 在没有破坏的情况下,强度是抵抗引起应力和应变的一种量度。这些力可能是: 渐变力 瞬时力 冲击力 不断变化的力 温差 如果一个机器的关键件损坏,整个机器必须关闭,直到修理好为止。设计一台新机器时,关键件具有足够的抵抗破坏的能力是非常重要的。设计者应尽可能准确 地确定所有的性质、大小、方向及作用点。机器设计不是这样,但精确的科学是这样,因此很难准确地确定所有力。另外,一种特殊材料的不同样本会显现nts出不同的性能,像抗负载、温度和其他外部条件。尽管如此,在机械设计中给予合理综合的设计计算是非常有用的。 此外,显而易见的是一个知道零件是如何和为什 么 破坏的设计师可以设计出需要很少维修的可靠机器。有时,一次失败是严重的,例如高速行驶的汽车的轮胎爆裂。另一方面,失败未必是麻烦。例如,汽车的冷却系统的散热器皮带管松开。这种破坏的后果通常是损失一些散热片,可以探测并改正过来。零件负 载类型是一个重要的标志。一般而言,变化的动负载比静负载会引起更大的差异。因此,疲劳强度必须符合。另一个关心的方面是这种材料是否直或易碎。例如有疲劳破坏的地方不易使用易碎的材料。一般的,设计师要靠考虑所有破坏情况,其包括以下方面: 应力 应变 外形 腐蚀 震动 外部环境破坏 紧固件的松脱 零件的尺寸和外形的选择也有很多因素。外部负荷的影响,如几何间断,由于轮廓而产生的残余应力和组合件干涉。 材料的机械性能 材料 的机械性能可以被分成三个方面:物理性能 ,化学性能,机械性能。 物理性能 密度或比重、温度等可以归为这一类。 化学性能 这一种类包括很多化学性能。其中包括酸碱性、化学反应性、腐蚀性。其中最重要的是腐蚀性,在外行人看来,腐蚀性被解释为在某处的零件抵抗腐蚀的能力。 机械性能 机械性能包括拉伸性能、压缩性能、剪切性能、扭转性能、冲击性能、疲劳性能和蠕变。材料的拉伸强度可以通过试件的横截面积出试件承受的最大载荷得到,这是在拉伸试验中,应力沿 Y 轴,应边沿 X 轴变化的曲线。一种材料加载时开始发生变化的初值取决于负载的大小。当负载去掉时可以看到变形消失。对于很多 材料而言,在达到弹性极限的一定应力值 A 之前,一直表现为这样。在应力 -应变图中,这是可以用线性关系来描述的。这之后又一个小的偏移。 nts 在弹性范围内,达到应力的极限之前,应力和应变是成比例的,这被称为比例极限 Ap。在这个区域,零件符合胡克定律,即应力与应变是成比例的,在弹性范围内(材料能完全恢复到最初的尺寸,当负载去掉时)。曲线中的实际点,比例极限在弹性极限处。这可以认为是材料恢复初值时落后于前者。这种影响在不含铁的材料中经常提到。 铁和镍有明显的弹性范围,而铜、锌、锡等,即
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:基于Solidworks的抓物机器车机构设计及运动仿真 【优秀含20张CAD图纸+SW三维建模+仿真+机械设备全套课程毕业设计】
链接地址:https://www.renrendoc.com/p-461522.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!