六自由度大臂机器人的设计【三维PROE】【14张CAD图纸+毕业论文】【并联机械手】

六自由度大臂机器人的设计【三维PROE】【14张CAD图纸+毕业论文】【并联机械手】

收藏

资源目录
跳过导航链接。
六自由度大臂机器人【三维PROE】【并联】【全套CAD图纸+毕业论文】【原创资料】.rar
!!YC490-六自由度大臂机器人说明书 .doc---(点击预览)
三维截图 (3).png---(点击预览)
三维截图 (2).png---(点击预览)
三维截图 (1).png---(点击预览)
PROE5.0
asm0001.asm.1
asm0001.asm.2
asm0001.asm.3
asm0001_asm.stp
asm0001__out.log.1
bearings_s7306_gb_292-94.prt.1
dianji1_1.prt.1
dianjizuo_1.prt.1
gongzuotaimian.prt.1
m5_________________________1_1_.prt.1
product_11775.asm.1
product_11792.prt.1
product_11809.prt.1
product_4771.prt.1
product_4788.prt.1
product_4805.asm.1
product_4822.prt.1
product_4839.prt.1
product_4856.prt.1
product_4873.prt.1
product_4890.prt.1
product_4924.prt.1
product_4941.prt.1
product_4992.asm.1
product_5043.asm.1
zhouchenzuo1_1.prt.1
zongtu.log
zongtu.STP
zongtu_log.xml
____1-10831.prt.1
____1-10847.prt.1
____1-15028.prt.1
____1-15033.prt.1
____1-34193.prt.1
____10.prt.1
____11.prt.1
____12.prt.1
____13.prt.1
____14.prt.1
____15.prt.1
____2.prt.1
____3-10815.prt.1
____3-10842.prt.1
____4.prt.1
____5.prt.1
____6.prt.1
____7.prt.1
____8.prt.1
____9.prt.1
!!YC490-六自由度大臂机器人图纸集合.dwg
压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

【温馨提示】 购买原稿文件请充值后自助下载。以下预览截图到的都有源文件,图纸是CAD,文档是WORD,下载后即可获得。预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。有疑问可以咨询QQ:414951605或1304139763六自由度大臂机器人摘  要六自由度大臂机器人采用夹持机构进行设计.夹持机构具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点可以作为航天上的对接器、航海上的潜艇救援对接器;工业上可以作为大件的装配机器人、精密操作的微动器;可以在汽车总装线上自动安装车轮部件;另外,医用机器人,天文望远镜等都利用了并联技术。本文夹持机构的研究方向:(1)六自由度大臂机器人组成原理的研究研究夹持机构自由度计算、运动副类型、支铰类型以及运动学分析、建模与仿真等问题。(2)六自由度大臂机器人运动空间的研究(3)六自由度大臂机器人结构设计的研究夹持机构的结构设计包括很多内容,如机构的总体布局、安全机构设计。由于本人水平有限,文中的错误和不足在所难免,恳请各位老师给予批评和指正。关键词:机械手;虚拟样机;夹持机构Six Degrees of Freedom Robot ArmAbstractSix degrees of freedom robot arm with clamping mechanism design. The clamping mechanism has high rigidity, strong bearing capacity, small error, high precision, load / weight ratio, good dynamic performance, easy control and a series of advantages can be used as a submarine rescue docking docking, space navigation on the industry; as for micro robot assembly, large precision operation; can automatically install the wheel parts in the automobile assembly line; in addition, medical robots, astronomical telescope using parallel technology etc.The research direction of clip holding mechanism:(1) on the principle of six degrees of freedom robot armStudy on the clamping mechanism, the calculation of degree of freedom motion type, hinge type and kinematics analysis, modeling and simulation etc.(2) six degrees of freedom robot arm motion space(3) study the structure design of the robot arm with six degrees of freedomThe structure design of clip holding mechanism includes a lot of contents, such as the design of the overall layout, mechanism of safety mechanism.Because of my limited ability, mistakes and shortcomings in this paper and ask teachers to give the criticism and correction.Key words: manipulator; virtual prototype; clamping mechanism目  录1  前 言11.1 课题研究背景意义11.2 国内外研究现状22  六自由度大臂机器人的结构及工作原理62.1 并联运动机构概述62.2 机械手总体结构原理72.3六自由度大臂机器人的总体结构82.4 控制系统结构及工作原理92.5 夹持机构工作空间的分析102.6三维空间分析原理122.7 臂部结构设计的基本要求163  六自由度大臂机器人主要部件的设计193.1 电动机选型193.2电机的分类193.3选择步进电机的计算203.4传动结构形式的选择233.5 轴承的寿命校核253.6 手爪夹持器结构设计与校核273.6.1手爪夹持器种类273.6.2夹持器设计计算283.7 夹持装置气缸设计计算293.7.1 初步确系统压力293.7.2气缸计算303.7.3 活塞杆的计算校核323.7.4 气缸工作行程的确定333.7.5 活塞的设计333.7.6 导向套的设计与计算333.7.7 端盖和缸底的计算校核343.7.8 缸体长度的确定353.7.9 缓冲装置的设计353.8 气压元件选取及工作原理353.8.1 气源装置353.8.2 执行元件363.8.3 控制元件363.8.4 辅助元件383.8.5 真空发生器384  夹持机构机夹持机构空间分析394.1夹持机构夹持机构机的运动学约束394.1.1 连杆杆长约束394.1.2 运动副转角约束394.1.3 连杆杆间干涉404.2 确定夹持机构空间的基本方法40总  结41参 考 文 献42致  谢431  前 言1.1 课题研究背景意义并联机器人与已经用的很好、很广泛的串联机器人相比往往使人感到它并不适合用作机器人,它没有那么大的活动空间,它活动上平台远远不如串联机器人手部来得灵活。的确这种6-TPS结构的夹持机构其工作空间只是一个厚度不大的蘑菇形空间,位于机构的上方,而表示灵活度的末端件3维转动的活动范围一般只在60°上下,角度最大也达不到±90°。可是和世界上任何事物一样都是一分为二的,若用并联式的优点比串联式的缺点,也同样令人吃惊。首先,并联式结构其末端件上平台同时经由6根杆支承,与串联的悬臂梁相比,刚度大多了,而且结构稳定;第二,由于刚度大,并联式较串联式在相同的自重或体积下有高得多的承载能力;第三,串联式末端件上的误差是各个关节误差的积累和放大,因而误差大而精度低,并联式没有那样的积累和放大关系,误差小而精度高;第四,串联式机器人的驱动电动机及传动系统大都放在运动着的大小臂上,增加了系统的惯性,恶化了动力性能,而并联式则很容易将电动机置于机座上,减小了运动负荷;第五,在位置求解上,串联机构正解容易,但反解十分困难,而夹持机构正解困难反解却非常容易。由于机器人的在线实时计算是要计算反解的,这就对串联式十分不利,而并联式却容易实现。夹持机构实质上是机器人技术与机构结构技术结合的产物,与实现等同功能的传统五坐标数控机构相比,夹持机构具有如下优点:刚度重量比大:因采用并联闭环静定或非静定杆系结构,且在准静态情况下,传动构件理论上为仅受拉压载荷的二力杆,故传动机构的单位重量具有很高的承载能力。响应速度快:运动部件惯性的大幅度降低有效地改善了伺服控制器的动态品质,允许动平台获得很高的进给速度和加速度,因而特别适于各种高速数控作业。环境适应性强:便于可重组和模块化设计,且可构成形式多样的布局和自由度组合。在动平台上安装刀具可进行多坐标铣、钻、磨、抛光,以及异型刀具刃磨等加工。装备机械手腕、高能束源或CCD摄像机等末端执行器,还可完成精密装配、特种加工与夹持机构等作业。技术附加值高:夹持机构具有“硬件”简单,“软件”复杂的特点,是一种技术附加值很高的机电一体化产品,因此可望获得高额的经济回报。目前,国际学术界和工程界对研究与开发夹持机构非常重视,并于90年代中期相继推出结构形式各异的产品化样机。1994年在芝加哥国际机构博览会上,美国Ingersoll铣床公司、Giddings&Lewis公司和Hexal公司首次展出了称为“六足虫”(Hexapod)和“变异型”(VARIAX)的数控机构与加工中心,引起轰动。此后,英国Geodetic公司,俄罗斯Lapik公司,挪威Multicraft公司,日本丰田、日立、三菱等公司,瑞士ETZH和IFW研究所,瑞典NeosRobotics公司,丹麦Braunschweig公司,德国亚琛工业大学、汉诺威大学和斯图加特大学等单位也研制出不同结构形式的数控铣床、激光加工和水射流机构、夹持机构机和加工中心。与之相呼应,由美国Sandia国家实验室和国家标准局倡议,已于1996年专门成立了Hexapod用户协会,并在国际互联网上设立站点。近年来,与夹持机构和并联机器人操作机有关的学术会议层出不穷,例如第4749届CIRP年会、19981999年CIRA大会、ASME第25届机构学双年会、第10届TMM世界大会均有大量文章涉及这一领域。由美国国家科学基金会动议,1998年在意大利米兰召开了第一届国际并联运动学机器专题研讨会,并决定第二届研讨会于2000年在美国密执安大学举行。19941999年期间,在历次大型国际机构博览会上均有这类新型机构参展,并认为可望成为21世纪高速轻型数控加工的主力装备。我国已将夹持机构的研究与开发列入国家“九五”攻关计划和863高技术发展计划,相关基础理论研究连续得到国家自然科学基金和国家攀登计划的资助。部分高校还将夹持机构的研发纳入教育部211工程重点建设项目,并得到地方政府部门的支持且吸引了机构骨干企业的参与。在国家自然科学基金委员会的支持下,中国大陆地区从事这方面研究的骨干力量,于1999年6月在清华大学召开了我国第一届并联机器人与夹持机构设计理论与关键技术研讨会,对夹持机构的发展现状、未来趋势以及亟待解决的问题进行了研讨。
编号:462114    类型:共享资源    大小:5.80MB    格式:RAR    上传时间:2015-07-28 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
自由度 机器人 三维 proe 并联 全套 cad 图纸 毕业论文 原创 资料
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

以下预览截图到的都有源文件,图纸是CAD,文档是WORD,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑

有疑问可以咨询QQ:414951605或1304139763


六自由度大臂机器人

摘  要

六自由度大臂机器人采用夹持机构进行设计.夹持机构具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点可以作为航天上的对接器、航海上的潜艇救援对接器;工业上可以作为大件的装配机器人、精密操作的微动器;可以在汽车总装线上自动安装车轮部件;另外,医用机器人,天文望远镜等都利用了并联技术。

本文夹持机构的研究方向:

(1)六自由度大臂机器人组成原理的研究

研究夹持机构自由度计算、运动副类型、支铰类型以及运动学分析、建模与仿真等问题。

(2)六自由度大臂机器人运动空间的研究

(3)六自由度大臂机器人结构设计的研究

夹持机构的结构设计包括很多内容,如机构的总体布局、安全机构设计。

由于本人水平有限,文中的错误和不足在所难免,恳请各位老师给予批评和指正。


关键词:机械手;虚拟样机;夹持机构


Six Degrees of Freedom Robot Arm

Abstract

Six degrees of freedom robot arm with clamping mechanism design. The clamping mechanism has high rigidity, strong bearing capacity, small error, high precision, load / weight ratio, good dynamic performance, easy control and a series of advantages can be used as a submarine rescue docking docking, space navigation on the industry; as for micro robot assembly, large precision operation; can automatically install the wheel parts in the automobile assembly line; in addition, medical robots, astronomical telescope using parallel technology etc..

The research direction of clip holding mechanism:

(1) on the principle of six degrees of freedom robot arm

Study on the clamping mechanism, the calculation of degree of freedom motion type, hinge type and kinematics analysis, modeling and simulation etc..

(2) six degrees of freedom robot arm motion space

(3) study the structure design of the robot arm with six degrees of freedom

The structure design of clip holding mechanism includes a lot of contents, such as the design of the overall layout, mechanism of safety mechanism.

Because of my limited ability, mistakes and shortcomings in this paper and ask teachers to give the criticism and correction.


Key words: manipulator; virtual prototype; clamping mechanism

目  录

1  前 言1

1.1 课题研究背景意义1

1.2 国内外研究现状2

2  六自由度大臂机器人的结构及工作原理6

2.1 并联运动机构概述6

2.2 机械手总体结构原理7

2.3六自由度大臂机器人的总体结构8

2.4 控制系统结构及工作原理9

2.5 夹持机构工作空间的分析10

2.6三维空间分析原理12

2.7 臂部结构设计的基本要求16

3  六自由度大臂机器人主要部件的设计19

3.1 电动机选型19

3.2电机的分类19

3.3选择步进电机的计算20

3.4传动结构形式的选择23

3.5 轴承的寿命校核25

3.6 手爪夹持器结构设计与校核27

3.6.1手爪夹持器种类27

3.6.2夹持器设计计算28

3.7 夹持装置气缸设计计算29

3.7.1 初步确系统压力29

3.7.2气缸计算30

3.7.3 活塞杆的计算校核32

3.7.4 气缸工作行程的确定33

3.7.5 活塞的设计33

3.7.6 导向套的设计与计算33

3.7.7 端盖和缸底的计算校核34

3.7.8 缸体长度的确定35

3.7.9 缓冲装置的设计35

3.8 气压元件选取及工作原理35

3.8.1 气源装置35

3.8.2 执行元件36

3.8.3 控制元件36

3.8.4 辅助元件38

3.8.5 真空发生器38

4  夹持机构机夹持机构空间分析39

4.1夹持机构夹持机构机的运动学约束39

4.1.1 连杆杆长约束39

4.1.2 运动副转角约束39

4.1.3 连杆杆间干涉40

4.2 确定夹持机构空间的基本方法40

总  结41

参 考 文 献42

致  谢43


1  前 言

1.1 课题研究背景意义

并联机器人与已经用的很好、很广泛的串联机器人相比往往使人感到它并不适合用作机器人,它没有那么大的活动空间,它活动上平台远远不如串联机器人手部来得灵活。的确这种6-TPS结构的夹持机构其工作空间只是一个厚度不大的蘑菇形空间,位于机构的上方,而表示灵活度的末端件3维转动的活动范围一般只在60°上下,角度最大也达不到±90°。可是和世界上任何事物一样都是一分为二的,若用并联式的优点比串联式的缺点,也同样令人吃惊。首先,并联式结构其末端件上平台同时经由6根杆支承,与串联的悬臂梁相比,刚度大多了,而且结构稳定;第二,由于刚度大,并联式较串联式在相同的自重或体积下有高得多的承载能力;第三,串联式末端件上的误差是各个关节误差的积累和放大,因而误差大而精度低,并联式没有那样的积累和放大关系,误差小而精度高;第四,串联式机器人的驱动电动机及传动系统大都放在运动着的大小臂上,增加了系统的惯性,恶化了动力性能,而并联式则很容易将电动机置于机座上,减小了运动负荷;第五,在位置求解上,串联机构正解容易,但反解十分困难,而夹持机构正解困难反解却非常容易。由于机器人的在线实时计算是要计算反解的,这就对串联式十分不利,而并联式却容易实现。

夹持机构实质上是机器人技术与机构结构技术结合的产物,与实现等同功能的传统五坐标数控机构相比,夹持机构具有如下优点:

刚度重量比大:因采用并联闭环静定或非静定杆系结构,且在准静态情况下,传动构件理论上为仅受拉压载荷的二力杆,故传动机构的单位重量具有很高的承载能力。

响应速度快:运动部件惯性的大幅度降低有效地改善了伺服控制器的动态品质,允许动平台获得很高的进给速度和加速度,因而特别适于各种高速数控作业。

环境适应性强:便于可重组和模块化设计,且可构成形式多样的布局和自由度组合。在动平台上安装刀具可进行多坐标铣、钻、磨、抛光,以及异型刀具刃磨等加工。装备机械手腕、高能束源或CCD摄像机等末端执行器,还可完成精密装配、特种加工与夹持机构等作业。

技术附加值高:夹持机构具有“硬件”简单,“软件”复杂的特点,是一种技术附加值很高的机电一体化产品,因此可望获得高额的经济回报。

目前,国际学术界和工程界对研究与开发夹持机构非常重视,并于90年代中期相继推出结构形式各异的产品化样机。1994年在芝加哥国际机构博览会上,美国Ingersoll铣床公司、Giddings&Lewis公司和Hexal公司首次展出了称为“六足虫”(Hexapod)和“变异型”(VARIAX)的数控机构与加工中心,引起轰动。此后,英国Geodetic公司,俄罗斯Lapik公司,挪威Multicraft公司,日本丰田、日立、三菱等公司,瑞士ETZH和IFW研究所,瑞典NeosRobotics公司,丹麦Braunschweig公司,德国亚琛工业大学、汉诺威大学和斯图加特大学等单位也研制出不同结构形式的数控铣床、激光加工和水射流机构、夹持机构机和加工中心。与之相呼应,由美国Sandia国家实验室和国家标准局倡议,已于1996年专门成立了Hexapod用户协会,并在国际互联网上设立站点。近年来,与夹持机构和并联机器人操作机有关的学术会议层出不穷,例如第47~49届CIRP年会、1998~1999年CIRA大会、ASME第25届机构学双年会、第10届TMM世界大会均有大量文章涉及这一领域。由美国国家科学基金会动议,1998年在意大利米兰召开了第一届国际并联运动学机器专题研讨会,并决定第二届研讨会于2000年在美国密执安大学举行。1994~1999年期间,在历次大型国际机构博览会上均有这类新型机构参展,并认为可望成为21世纪高速轻型数控加工的主力装备。

我国已将夹持机构的研究与开发列入国家“九五”攻关计划和863高技术发展计划,相关基础理论研究连续得到国家自然科学基金和国家攀登计划的资助。部分高校还将夹持机构的研发纳入教育部211工程重点建设项目,并得到地方政府部门的支持且吸引了机构骨干企业的参与。在国家自然科学基金委员会的支持下,中国大陆地区从事这方面研究的骨干力量,于1999年6月在清华大学召开了我国第一届并联机器人与夹持机构设计理论与关键技术研讨会,对夹持机构的发展现状、未来趋势以及亟待解决的问题进行了研讨。


内容简介:
哈尔滨理工大学学士学位论文本科毕业设计(论文)六自由度大臂机器人2015年 6 月55六自由度大臂机器人摘 要六自由度大臂机器人采用夹持机构进行设计.夹持机构具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点可以作为航天上的对接器、航海上的潜艇救援对接器;工业上可以作为大件的装配机器人、精密操作的微动器;可以在汽车总装线上自动安装车轮部件;另外,医用机器人,天文望远镜等都利用了并联技术。本文夹持机构的研究方向:(1)六自由度大臂机器人组成原理的研究研究夹持机构自由度计算、运动副类型、支铰类型以及运动学分析、建模与仿真等问题。(2)六自由度大臂机器人运动空间的研究(3)六自由度大臂机器人结构设计的研究夹持机构的结构设计包括很多内容,如机构的总体布局、安全机构设计。由于本人水平有限,文中的错误和不足在所难免,恳请各位老师给予批评和指正。关键词:机械手;虚拟样机;夹持机构Six Degrees of Freedom Robot ArmAbstractSix degrees of freedom robot arm with clamping mechanism design. The clamping mechanism has high rigidity, strong bearing capacity, small error, high precision, load / weight ratio, good dynamic performance, easy control and a series of advantages can be used as a submarine rescue docking docking, space navigation on the industry; as for micro robot assembly, large precision operation; can automatically install the wheel parts in the automobile assembly line; in addition, medical robots, astronomical telescope using parallel technology etc.The research direction of clip holding mechanism:(1) on the principle of six degrees of freedom robot armStudy on the clamping mechanism, the calculation of degree of freedom motion type, hinge type and kinematics analysis, modeling and simulation etc.(2) six degrees of freedom robot arm motion space(3) study the structure design of the robot arm with six degrees of freedomThe structure design of clip holding mechanism includes a lot of contents, such as the design of the overall layout, mechanism of safety mechanism.Because of my limited ability, mistakes and shortcomings in this paper and ask teachers to give the criticism and correction.Key words: manipulator; virtual prototype; clamping mechanism目 录1 前 言11.1 课题研究背景意义11.2 国内外研究现状22 六自由度大臂机器人的结构及工作原理62.1 并联运动机构概述62.2 机械手总体结构原理72.3六自由度大臂机器人的总体结构82.4 控制系统结构及工作原理92.5 夹持机构工作空间的分析102.6三维空间分析原理122.7 臂部结构设计的基本要求163 六自由度大臂机器人主要部件的设计193.1 电动机选型193.2电机的分类193.3选择步进电机的计算203.4传动结构形式的选择233.5 轴承的寿命校核253.6 手爪夹持器结构设计与校核273.6.1手爪夹持器种类273.6.2夹持器设计计算283.7 夹持装置气缸设计计算293.7.1 初步确系统压力293.7.2气缸计算303.7.3 活塞杆的计算校核323.7.4 气缸工作行程的确定333.7.5 活塞的设计333.7.6 导向套的设计与计算333.7.7 端盖和缸底的计算校核343.7.8 缸体长度的确定353.7.9 缓冲装置的设计353.8 气压元件选取及工作原理353.8.1 气源装置353.8.2 执行元件363.8.3 控制元件363.8.4 辅助元件383.8.5 真空发生器384 夹持机构机夹持机构空间分析394.1夹持机构夹持机构机的运动学约束394.1.1 连杆杆长约束394.1.2 运动副转角约束394.1.3 连杆杆间干涉404.2 确定夹持机构空间的基本方法40总 结41参 考 文 献42致 谢431 前 言1.1 课题研究背景意义并联机器人与已经用的很好、很广泛的串联机器人相比往往使人感到它并不适合用作机器人,它没有那么大的活动空间,它活动上平台远远不如串联机器人手部来得灵活。的确这种6-TPS结构的夹持机构其工作空间只是一个厚度不大的蘑菇形空间,位于机构的上方,而表示灵活度的末端件3维转动的活动范围一般只在60上下,角度最大也达不到90。可是和世界上任何事物一样都是一分为二的,若用并联式的优点比串联式的缺点,也同样令人吃惊。首先,并联式结构其末端件上平台同时经由6根杆支承,与串联的悬臂梁相比,刚度大多了,而且结构稳定;第二,由于刚度大,并联式较串联式在相同的自重或体积下有高得多的承载能力;第三,串联式末端件上的误差是各个关节误差的积累和放大,因而误差大而精度低,并联式没有那样的积累和放大关系,误差小而精度高;第四,串联式机器人的驱动电动机及传动系统大都放在运动着的大小臂上,增加了系统的惯性,恶化了动力性能,而并联式则很容易将电动机置于机座上,减小了运动负荷;第五,在位置求解上,串联机构正解容易,但反解十分困难,而夹持机构正解困难反解却非常容易。由于机器人的在线实时计算是要计算反解的,这就对串联式十分不利,而并联式却容易实现。夹持机构实质上是机器人技术与机构结构技术结合的产物,与实现等同功能的传统五坐标数控机构相比,夹持机构具有如下优点:刚度重量比大:因采用并联闭环静定或非静定杆系结构,且在准静态情况下,传动构件理论上为仅受拉压载荷的二力杆,故传动机构的单位重量具有很高的承载能力。响应速度快:运动部件惯性的大幅度降低有效地改善了伺服控制器的动态品质,允许动平台获得很高的进给速度和加速度,因而特别适于各种高速数控作业。环境适应性强:便于可重组和模块化设计,且可构成形式多样的布局和自由度组合。在动平台上安装刀具可进行多坐标铣、钻、磨、抛光,以及异型刀具刃磨等加工。装备机械手腕、高能束源或CCD摄像机等末端执行器,还可完成精密装配、特种加工与夹持机构等作业。 技术附加值高:夹持机构具有“硬件”简单,“软件”复杂的特点,是一种技术附加值很高的机电一体化产品,因此可望获得高额的经济回报。目前,国际学术界和工程界对研究与开发夹持机构非常重视,并于90年代中期相继推出结构形式各异的产品化样机。1994年在芝加哥国际机构博览会上,美国Ingersoll铣床公司、Giddings&Lewis公司和Hexal公司首次展出了称为“六足虫”(Hexapod)和“变异型”(VARIAX)的数控机构与加工中心,引起轰动。此后,英国Geodetic公司,俄罗斯Lapik公司,挪威Multicraft公司,日本丰田、日立、三菱等公司,瑞士ETZH和IFW研究所,瑞典NeosRobotics公司,丹麦Braunschweig公司,德国亚琛工业大学、汉诺威大学和斯图加特大学等单位也研制出不同结构形式的数控铣床、激光加工和水射流机构、夹持机构机和加工中心。与之相呼应,由美国Sandia国家实验室和国家标准局倡议,已于1996年专门成立了Hexapod用户协会,并在国际互联网上设立站点。近年来,与夹持机构和并联机器人操作机有关的学术会议层出不穷,例如第4749届CIRP年会、19981999年CIRA大会、ASME第25届机构学双年会、第10届TMM世界大会均有大量文章涉及这一领域。由美国国家科学基金会动议,1998年在意大利米兰召开了第一届国际并联运动学机器专题研讨会,并决定第二届研讨会于2000年在美国密执安大学举行。19941999年期间,在历次大型国际机构博览会上均有这类新型机构参展,并认为可望成为21世纪高速轻型数控加工的主力装备。 我国已将夹持机构的研究与开发列入国家“九五”攻关计划和863高技术发展计划,相关基础理论研究连续得到国家自然科学基金和国家攀登计划的资助。部分高校还将夹持机构的研发纳入教育部211工程重点建设项目,并得到地方政府部门的支持且吸引了机构骨干企业的参与。在国家自然科学基金委员会的支持下,中国大陆地区从事这方面研究的骨干力量,于1999年6月在清华大学召开了我国第一届并联机器人与夹持机构设计理论与关键技术研讨会,对夹持机构的发展现状、未来趋势以及亟待解决的问题进行了研讨。1.2 国内外研究现状夹持机构具有高刚度、高承载能力、高速度、高精度、重量轻、机械结构简单、标准化程度高和模块化程度高等优点,在要求精密加工的航空航天、兵器、船舶、电子等领域得到了成功的应用。(1)串联结构中的横梁部件很容易受到弯曲扭矩的作用而产生扭曲变形,从而产生动态误差;(2)由于采用串联的方法,因而整个运动误差是每个坐标轴运动误差的累加;(3)由于运动部件质量较重,从而使的运动惯性增大,运动速度收到限制,因而直接影响了夹持机构效率;(4)不满足夹持机构的基本原理阿贝原理;(5)由于受X,Y,Z相互垂直导轨的约束,测头的空间位姿不够灵活。 图1.1 普通笛卡尔式串联结构示意图从整个发展进程不难看出,夹持机构技术是为满足日益进步的制造技术的需求而不断向前发展的,是为先进制造技术而服务的。近几年,随着精益生产、敏捷制造、虚拟制造、并行工程和逆向工程等各种先进制造思想和理论的不断提出,对夹持机构机的夹持机构精度、夹持机构效率及灵活性等相应的技术指标又提出了更高的要求,而传统的具有笛卡儿坐标系结构的三夹持机构机因其自身结构的限制已很难达到这一要求,于是,各种非笛卡儿式夹持机构技术应运而生并迅速发展起来13。 图1.2 几种非笛卡尔串联机构夹持机构机结构示意图当今国际市场需求快速变化的特点和21世纪更加个性化的市场趋势,促进了快速设计和制造技术的发展。并联夹持机构机是近30年发展起来的一种高效率的新型精密夹持机构仪器,克服了传统串联夹持机构机结构布局的固有缺陷,有效地降低重量和提高对生产环境的适应性,满足了快速多变的市场需求。与常用的串联夹持机构机相比,它的优点是:(1)并联中的可动平台同时经由3根可沿各自轴向伸缩的连杆支撑,从而使整个系统的刚度较串联机构相比有较大程度的提高;(2)各并联杆件只承受沿轴向的线性调节力的作用,因而其运动误差小,不易变形;(3)夹持机构中,各杆件间不存在误差累积和放大关系,容易实现高精度夹持机构;(4)并联运动机构中运动部件的惯性质量小,刚度大,因而有望实现高速、高效率夹持机构;(5)可以将夹持机构点放置在测长装置的延长线上,从而减小阿贝误差对夹持机构结果的影响;(6)并联夹持机构机测头的空间位姿灵活,可从任何角度进入工作表面,因而对表面形状复杂,孔隙方位多的零件夹持机构比较方便;(7)夹持机构结果不易受空气波动、温度变化等因素的影响;(8)不需要复杂的跟踪机构、控制装置等;(9)夹持机构具有“硬件”简单,“软件”复杂的特点,是一种技术附加值很高的机电一体化产品,因而渴望获得高额的经济回报。由此可以看出,夹持机构恰好能够对串联机构的应用局限进行恰当的补充,这无疑为新一代夹持机构机的开发与研制带来了希望,从而为拓宽夹持机构机的应用领域,促进产品的多样化,提高产品的市场竞争力奠定了坚实的理论基础。近年来,以夹持机构学为理论依据的智能机器人技术及计算机数控加工技术的研究引起了各国学者的极大兴趣,现已成为新的研究热点,并认为是21世界极具发展前景的先进技术14-15。由于并联运动机构具有结构刚性大、运动速度高、误差不叠加等独特特性,因而若将其应用于夹持机构机中,将有可能使夹持机构机的夹持机构精度及夹持机构效率等综合性能得到很大程度的改善。由此可以看出,并联运动机构理论及应用研究的兴起也为新型夹持机构机的开发提供了机遇,所以,开展并联运动机构的研究工作是非常必要的。2 六自由度大臂机器人的结构及工作原理2.1 并联运动机构概述从夹持机构的结构特点不难看出,夹持机构夹持机构机属于一种新型非笛卡儿式夹持机构系统。传统的笛卡儿式夹持机构系统对空间位置坐标的夹持机构是直接通过三个相互垂直的长度基准来实现的,也就是说,这种夹持机构机的夹持机构模型是直接建立在直角坐标系基础之上的,因而该夹持机构机具有夹持机构建模容易,夹持机构结果直观、数据处理简单、符合大多数工件夹持机构的需要等优点。而对于由并联闭环机构所组成的并联夹持机构机来说,其测头处的空间位置坐标是有若干个并联调节器的长度基准和连接上下平台的球形副(或转动副)的角度基准来表述的,由于这些变量参数之间的关系是非线性,所以与普通直角型夹持机构机相比夹持机构夹持机构机的夹持机构建模问题就变得十分复杂。并联运动机构是指上、下平台用2个或2个以上分支相连,机构具有2个或2个以上自由度,且以并联方式驱动的空间闭环运动机构。由于并联运动机构具有刚度重量比大,运行速度高、末端执行器位姿灵活、误差不叠加、结构简单、易于模块化设计等优点 ,因而在许多领域都已得到广泛的应用。例如:德国汉诺威、斯图加特大学及不伦瑞克大学等已先后将并联运动机构应用于激光加工、机构、普通装配及医学等领域中。国内一些知名大学,如清华大学、天津大学、东北大学、燕山大学和哈尔滨工业大学等等,也正在开展夹持机构方面的研究工作。实际上,夹持机构建模问题就是夹持机构的正运动求解问题。所谓正运动求解,就是在已知夹持机构中各运动副的位置参数及各并联调节器杆长变化量的情况下,来计算末端执行器(如测头)出的空间位置坐标。由空间机构学理论可知并联闭环机构的位置反解比较容易,但其位置正解却相当复杂,到目前为止,也只能给出其数值解,且明显存在多解现象。我们通过对夹持机构机的布局结构进行优化,即将连接上下活动平台的运动副以等边三角形的方式进行排列,从而使个运动副之间的相互关系简洁化,然后充分利用机构的运动约束和集合约束关系,建立由对应机构组成的并联夹持机构机的夹持机构模型。2.2 机械手总体结构原理本文所研究的夹持机构的结构见图2-116。由图2.2.1可以看出,该主要由上下2个平台和连杆组成。从机构的连接方式不难看出,三个中间连杆的运动是相互关联和制约的,而不是相互分立的,因此,这种机构属于并联运动机构。夹持机构的工作原理十分简单,它是通过移动副的调节器来控制移动副的伸缩,使连杆长度发生变化,从而使测头移动至测点位置,然后再由安装在移动副内的长度夹持机构装置测出杆长的变化量,并以此为依据,计算出测点处的空间坐标。图2.1 夹持机构结构简图自工业机器人问世以来,采用串联机构的机器人占主导位置。串联机器人具有结构简单、操作空间大,因而获得广泛应用。由于串联机器人自身的限制,研究人员逐渐把研究方向转向并联机器人。和串联机器人相比,并联机器人有以下特点:1. 并联结构其末端件上同时由6根杆支撑,与串联的悬臂梁相比刚度大,结构稳定。2. 由于刚度大,并联结构较串联结构在相同的自重或体积下,有高的多的承载能力大。3. 串联机构末端件上的误差是各个关节误差的积累和放大,因而误差大、精度低,并联式则没有那样的误差积累和放大关系,微动精度高。4. 串联机器人的驱动电机及传动系统大都放在运动着的大小臂上,增加了系统的惯量,恶化了动力性能,而并联机器人将电机置于机座上,减小了运动负荷。5. 在位置求解上,串联机构正解容易,但反解困难。而并联机构正解困难,反解非常容易,而机器人在线实时计算是要计算反解的。2.3六自由度大臂机器人的总体结构六自由度大臂机器人的组成及各部分关系概述:它主要由机械系统(执行系统、驱动系统)、控制检测系统及智能系统组成。(1) 执行系统:执行系统是六自由度大臂机器人完成关节工件,实现各种运动所必需的机械部件,它包括手部、腕部、机身等。(a) 末端执行器:机械手为了进行作业而配置的操作机构,直接喷漆工件。(b) 腕部:又称手腕,是连接手部和臂部的部件,其作用是调整或改变末端执行器的工作方位。(c) 臂部:联接机座和手部的部分,是支承腕部的部件,作用是承受工件的管理管理荷重,改变手部的空间位置,满足机械手的作业空间,将各种载荷传递到机座。(d) 机身:机械手的基础部分,起支撑作用,是支撑手臂的部件,其作用是带动臂部自转、升降或俯仰运动。(2) 驱动系统:为执行系统各部件提供动力,并驱动其动力的装置。常用的有机械传动、机电传动、气压传动和电传动。(3) 控制系统:通过对驱动系统的控制,使执行系统按照规定的要求进行工作,当发生错误或故障时发出报警信号。(4) 检测系统:作用是通过各种检测装置、传感装置检测执行机构的运动情况,根据需 要反馈给控制系统,与设定进行比较,以保证运动符合要求。 实践证明,六自由度大臂机器人可以代替人手的繁重劳动,显著减轻工人的劳动强度,改善劳动条件,提高劳动生产率和自动化水平。工业生产中经常出现的笨重工件的搬运和长期频繁、单调的操作,采用机械手是有效的。此外,它能在高温、低温、深水、宇宙、放射性和其他有毒、污染环境条件下进行操作,更显示其优越性,有着广阔的发展前途4-8。2.4 控制系统结构及工作原理夹持机构夹持机构机的控制与夹持机构系统结构示意图如图2-2所示:由图可以看出来,该夹持机构夹持机构机的控制与夹持机构系统主要由三个基本单元组成,它们是:PC处理器单元,伺服电机控制单元和夹持机构数据采集与存储单元。PC处理单元主要完成数据处理、数据显示、几何尺寸计算和三维形体的重建等,同时还负责向其他两个单元发送控制指令,以便协调整个系统的工作。伺服电机控制单元则主要是依据PC计算机所发送的控制指令对三个伺服电机的运行状态进行控制,从而确保他们按实际要求正常运转。夹持机构数据采集与存储单元主要用于完成对三个线性刻度尺(例如光栅尺、激光干涉仪等)输出的脉冲信号进行记数,并将计数结果存储到对应的三个存储器中,以便于PC计算机进行读取。图2.2 控制与夹持机构系统框图上述控制与夹持机构系统的工作原理可简述如下:当操作人员通过计算机键盘(或其他键控开关)向计算机发出控制命令后,PC处理器则通过I/O控制器接口向三个交流伺服电机分别发出相应的运行控制指令。当三个伺服电机接受到正确的指令信息后,即驱动各自的滚珠丝杠进行旋转,从而带动相应的移动副按实际要求进行伸缩,使测头向目标点移动;同时,随着移动副的伸缩,与之相连的线性长度记录仪(如光栅尺等)开始输出计数脉冲,并由三个32位的计数器分别进行计数。若测头移动过程中,连杆或运动副出现干涉现象,则驱动系统将立即向计算机反馈信息,以便通知计算机及时调整三个伺服电机的运行状态,及时修正测头的运行轨迹,从而确保测头安全、柔性地到达夹持机构点位置。当测头与被测目标点接触的一刹那,测头的微动开关将产生一触发脉冲,并将其反馈给PC计算机作为采样触发信号。PC计算机接收到该采样指令后,则向32位计数器发出读数指令,随后便将计数器中的三个脉冲计数值读入处理器,经相应处理软件计算后,得到该夹持机构点处的实际空间坐标值,从而完成一次坐标采样过程。2.5 夹持机构工作空间的分析工作空间(Workplace):设给定参考点C是动平台执行器的端点,工作空间是该端点在空间可以达到的所有点的集合。完全工作空间(Complete workplace):动平台上执行器端点可从任何方向(位姿)到达的点的集合。定向工作空间(Constant workplace):动平台在固定位姿时执行器端点可以到达的点的集合。最大工作空间(Maximal workplace):动平台执行器端点可到达的点的最大集合,并考虑其具体位姿。完全工作空间和定向工作空间都是最大工作空间的子集.另外,工作空间是夹持机构的重要特性,影响它的大小和形状的因素主要有以下三个: 杆长的限制,杆件长度的变化是受到其结构限制的,每一杆件的长度必须小于最大杆长,大于最小杆长。 转动副转角的限制,各种铰链,包括球铰接和万向铰接的转角都受到结构研制的,每一铰链的转角都应小于最大转角。 杆件的尺寸干涉,连接动平台和固定平台的杆件都具有几何尺寸,因此各杆件之间在运动过程中可能发生相互干涉。设杆件是直径为D的圆柱体,两相邻杆件轴线之间的距离为Di,则DiD。并联机器人构型设计原则1、在进行机构形式设计时,除了要满足规定的运动形式、运动规律或运动轨迹外,还应该遵循下面几项准则:(l)机构的运动链要尽可能的短。完成同样的动作要求,应该优先选用机构构件数和运动副数少的机构,以简化其结构从而减轻重量、降低成本、减少由于零件的制造误差而形成的运动链的累积误差,运动链短有利于提高机构的刚度,减少振动。(2)在运动副的选择上,优先选用低副。低副机构的运动元素加工方便,容易保证配合的精度以及有较高的承载能力。(3)适当选择原动机,使机构有好的动力学性能。并联机器人的尺度设计原则以往,我们在设计阶段为了确定机器人操作手机构的尺寸和确定机器人操作手在工作空间内部的位置和姿态时多数是靠经验和直觉。现在,为了开发出高精度、高速度和高效率的并联机器人,我们在机构的综合设计时要考虑到它的工作空间的体积和形状、奇异位形、输出的各向同性等条件。但是,在全局最优的机构尺度综合设计中,顾全到上述的所有条件是十分困难的。国内外的学者提出了许多机构综合的标准,以便在满足指定的设计指标下,机构的性能达到最优。由于并联机器人与串联机器人相比,工作空间小。因此为实现作业要求,在设计时要先确定能够满足性能指标的工作空间是至关重要的。另外,在并联机构的设计过程中必须要考虑要避免构型奇异。与串联机器人不同的是,并联机器人不仅有运动学奇异,还有由构型所导致的构型奇异。即奇异区域通常都扩张到整个工作空间或一些显著的子空间,而且是实际操作中最常用的区域。0.M给出了判定并联机构发生构型奇异的条件:(l)如果动平台和定平台是相似的正多边形,则整个工作空间内雅戈比矩阵都是奇异的;(2)如果动平台和定平台是相似的非正多边形,并且每一对相应的顶点通过一条连杆相连,则雅戈比矩阵在工作空间内的大部分区域都是奇异的。这种设计上的奇异的存在,将使并联机器人由于无法平衡施加在动平台上的负载而不能工作。在构型奇异附近的区域,即使没有发生构型奇异,也有可能出现雅戈比矩阵条件数很大的情况,同样会导致运动和力的传递性能变的很差,我们称这种区域为病态条件区域。因此,进行并联机构尺度综合设计时必须考虑在满足工作空间要求、运动可传递性的要求以及负载能力要求的情况下,要避开构型奇异点及奇异点附近的病态区域2.6三维空间分析原理首先,运动参数的平衡条件下出现的子集必须被确定为系统的总势能不变的任何配置,即,在势能的表达依赖于配置项系数等于零。额外的标量和矢量变量出现在(2)中图3定的相关术语中。设计中出现的变量之间的(2),分别计算设计过程中的第一阶段,只有关节lir的链接和向量bi的组件会影响工作空间形状和机构的奇异位置的长度。这些参数被确定为该机构的静平衡是完成的,他们被认为是恒定的输入数据(其值在表II中给出)。因此,在平衡条件下的完整性将在随后的优化程序保存在。然后,我们得确定剩余的运动学参数,不影响平衡条件下的最大子集。将这些参数作为优化参数提高的工作空间和运动特性的机制。随后,平衡条件不依赖于关节的连接点Pi0的位置。假设这些点位于一个以r为半径O为圆心的圆上,r以被视为一个优化参数。此外,让成为连接第i关节流动锥对称轴的球形接头。 图3.1关节相关设计参数对于移动框架轴的方向,用角度和表示,不影响平衡的条件。在这个方向上表示,角度是轴和轴上移动平面投影之间的夹角。轴的投影用矢量角来表示。至于大多数并联机器人机构的商业应用程序是可实现对称的机构设计。因此我们对非限制性的附加条件:。我们的优化参数组最后由向量表示。III基于恒定位第一优化程序工作区在本节中,我们考虑的第一个应用程序的机制作为定位和定向装置的重物。在这样的背景下,我们提出了一个过程,即:恒定方向的工作区是自由临界奇异性体积最大三维区域。几种方法是目前文献中的并联机器人定姿态工作空间计算(见,例如, 26 一个详细的这些方法分类)。在第一类方法中最有代表性的是 13 和 15 提出的纯几何方法,并在 26 中扩展到机械约束与被动关节的运动范围。第二类方法被称为离散化 技术(例如, 1 , 8 ,和 25 )。最基本的,一个足够大的立方区域在笛卡尔空间中是完全离散的。然后,对这三次网格中的每个节点,解决了逆运动学和一套机械约束测试。有可能是最复杂的和最快的离散化方法,工作空间的边界是在球面坐标系统确定的离散范围内的方位角和高度角 8 。尽管这样的方法是计算密集型的,提供的工作空间边界的几何性质的信息很少,他们可以很容易地应用到任何类型的并联机器人的几乎任何的机械约束。除了所有常规的机械限制,它的目的是在这里将封闭形式的方程转化为运动约束集的三条关节的6-DOF并联机构的奇异轨迹。固有的复杂性原因,离散化算法 8 被发现是用于以下设计程序最合适的方法。A 常规机械约束 本节总结了传统的机械限制的机制定姿态工作空间。作为一个初步的,我们要精确,平台的定位将代表本节中欧拉角的定义,首先是由第一旋转移动框架的基轴的角度所表示,然后与通过角度的新轴有关,最后转化为通过角度的移动轴。对于欧拉角的选择,其突变发生在处。旋转矩阵定义为:其中随后,主要存在着四个基本的机械约束以限制二关节并联机构的定位空间,即:1)关节的长度2);三球形关节运动的范围;3)关节的干涉;4)机械设计相关的附加约束。1)限制关节的长度:让移动平台的定位是由(3,3)的正交旋转矩阵组成。对于一个给定位置(矢量)和方向(矩阵)的移动平台,所需关节的长度,用表示,如下式:然后,五连杆结构的关节施加一个长度约束如下式:对于移动平台的大多数配置,只有关节的支撑段pi2pi3和i关节的pi3pi5与j关节的关节部之间的碰撞是一个问题。因此,采用3杆机构对二关节机构的结构设置一组约束,如下:这些约束实现的校验方程需要两个线段之间距离是最小的,这需要一个实现多步算法的计算。由于空间的限制,我们这里不清楚这样的算法,但我们建议读者参考一中25提出的方法。4)附加约束:考虑到基础平台原型的具体设计提出了以下限制:B 奇异轨迹和内在的运动约束在这一部分中,对二关节并联机构奇异轨迹进行了总结,本结构方程是在封闭的形式下提出被纳入在下面离散化算法的运动约束。在 29 利用格拉斯曼线几何确定了机构的奇异位形。五个系列的奇异性进行鉴定。1)i的关节两个节是一致的,即,对于每一段i,定义最小和最大的球体半径分别为和,坐标中心,构成机制的定位工作空间的边界。用以约束(5)所涉及的例子。2)当移动和基础平台是平行的,即,一个奇点发生在当轴z平台上的旋转角等于0或)。 图4 关节的机制(顶视图)3)在移动平台的一个任意方向的情况下,一个单一的配置发生时,它的末端位于一个用笛卡尔排列所表示的二次曲面上。2)对于定位工作空间离散化技术的综述:在 8 中提出的离散化技术是基于以下两个算法的完整实现。球面搜索算法:让我们假设一个近似的中心点Oc的位置是由一个给定平台的方向确定的。通过该算法进行推断从而得到一个工作空间边界,该边界以Oc为中心点以为球面坐标系。检查整个空间的过程是通过离散的方位角和天顶角和来完成。对于每一对,在被检测出违背约束之前它们的半径逐渐递增,。当被发现位于工作区之外时,工作空间边界的位置沿球形线构成了第一个近似值,第二算法,称为工作空间边界的算法,用于验算结果。工作空间边界的算法:对于每个方位角和天顶角,该算法都在检查过程中的最后阶段。它是基于以区间折半搜索技术来保证在工作空间边界的之内,其中是一个给定的误差范围。2.7 臂部结构设计的基本要求臂部部件是六自由度大臂机器人的主要部件。它的作用是支承手部,并带动它们做空间运动。臂部运动的目的:把手部送到空间运动范围内的任意一点。如果改变手部的姿态(方位)关节,则臂部自由度加以实现。因此,一般来说臂部设计基本要求: (1)臂部应承载能力大、刚度好、自重轻臂部通常即受弯曲(而且不仅是一个方向的弯曲),也受扭转,应选用弯和抗扭刚度较高的截面形状。很明显,在截面积和单位重量基本相同的情况下,钢管、工字钢和槽钢的惯性矩要比圆钢大得多。所以,六自由度大臂机器人常采用无缝钢管作为导向杆,用工字钢(如图4.1和4.2所示)或槽钢作为支撑钢,这样既提高了手臂的刚度,又大大减轻了手臂的自重,而且空心的内部还可以布置驱动装置、传动装置以及管道,这样就使结构紧凑、外形整齐。(2)臂部运动速度要高,惯性要小在一般情况下,手臂的要求匀速运动,但在手臂的启动和终止瞬间,运动是变化的,为了减少冲击,要求启动时间的加速度和终止前减速度不能太大,否则引起冲击和振动。 为减少转动惯量,应采取以下措施: (a) 减少手臂运动件的重量,采用铝合金等轻质高强度材料; (b) 减少手臂运动件的轮廓尺寸 (c) 减少回转半径 (d) 驱动系统中设有缓冲装置(3)手臂动作应灵活。为减少手臂运动件之间的摩擦阻力,尽可能用滚动摩擦代替滑动摩擦。(4)位置精度要高。一般来说,直角和圆柱坐标系六自由度大臂机器人位置精度高;关节式六自由度大臂机器人的位置最难控制,故精度差;在手臂上加设定位装置和检测机构,能较好的控制位置精度。本文采用铝合金材料设计成薄壁件,一方面保证机械臂的刚度,另一方面可减小机械臂的重量,减小基座关节电机的载荷,并且提高了机械臂的动态响应。砂型铸造铸件最小壁厚的设计。最小壁厚:每种铸造合金都有其适宜的壁厚,不同铸造合金所能浇注出铸件的“最小壁厚”也不相同,主要取决于合金的种类和铸件的大小,见表4.1所示:铸件尺寸 铸钢 灰铸铁 球墨铸铁 可锻铸铁 铝合金 铜合金 200200 200200500500 500500 58 1012 1520 35 410 1015 46 812 1220 35 68 33.5 46 35 68 表4.1 砂型铸造铸件最小壁厚计(mm)以上介绍的只是砂型铸造铸件结构设计的特点,在特种铸造方法中,应根据每种不同的铸造方法及其特点进行相应的铸件结构设计。本文机械臂壳体采用铸造铝合金。具体尺寸见总装配图。463 六自由度大臂机器人主要部件的设计3.1 电动机选型1按工作电源分类根据电动机工作电源的不同,可分为直流电动机和交流电动机。其中交流电动机还分为单相电动机和三相电动机。 2按结构及工作原理分类电动机按结构及工作原理可分为异步电动机和同步电动机。同步电动机还可分为永磁同步电动机、磁阻同步电动机和磁滞同电动机。异步电动机可分为感应电动机和交流换向器电动机。感应电动机又分为三相异步电动机、单相异步电动机和罩极异步电动机。交流换向器电动机又分为单相串励电动机、交直流两用电动机和推斥电动机。直流电动机按结构及工作原理可分为无刷直流电动机和有刷直流电动机。有刷直流电动机可分为永磁直流电动机和电磁直流电动机。电磁直流电动机又分为串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。永磁直流电动机又分为稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钴永磁直流电动机。 3按起动与运行方式分类电动机按起动与运行方式可分为电容起动式电动机、电容盍式电动机、电容起动运转式电动机和分相式电动机。3.2电机的分类按用途分类电动机按用途可分为驱动用电动机和控制用电动机。驱动用电动机又分为电动工具(包括钻孔、抛光、磨光、开槽、切割、扩孔等工具)用电动机、家电(包括洗衣机、电风扇、电冰箱、空调器、录音机、录像机、影碟机、吸尘器、照相机、电吹风、电动剃须刀等)用电动机及其它通用小型机械设备(包括各种小型、小型机械、医疗器械、电子仪器等)用电动机。控制用电动机又分为电动机和伺服电动机等。 按转子的结构分类电动机按转子的结构可分为笼型感应电动机(旧标准称为鼠笼型异步电动机)和绕线转子感应电动机(旧标准称为绕线型异步电动机)。 按运转速度分类电动机按运转速度可分为高速电动机、低速电动机、恒速电动机、调速电动机。低速电动机又分为齿轮减速电动机、电磁减速电动机、力矩电动机和爪极同步电动机等。 调速电动机除可分为有级恒速电动机、无级恒速电动机、有级变速电动机和无极变速电动机外,还可分为电磁调速电动机、直流调速电动机、PWM变频调速电动机和开关磁阻调速电动机。3.3选择步进电机的计算机构工作时,需要克服摩擦阻力矩、工件负载阻力矩和启动时的惯性力矩。根据转矩的计算公式15: (3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8)式中: 偏转所需力矩(Nm);摩擦阻力矩(Nm);负载阻力矩(Nm);启动时惯性阻力矩(Nm);工件负载对回转轴线的转动惯量(kgm2);对回转轴线的转动惯量(kgm2);偏转角速度(rad/s);质量(kg);负载质量(kg);启动时间(s);部分材料密度(kg/m3);手腕偏转末端的线速度(m/s)。根据已知条件:kg,m/s,m,m,m,s,采用的材料假定为铸钢,密度kg/m3。将数据代入计算得: kg r/s kgm2 kgm2 Nm Nm Nm因为传动是通过减速器实现的,所以查取手册15得:弹性联轴器传动效率;滚动轴承传动效率(一对);减速器传动效率;计算得传动的装置的总效率。电机在工作中实际要求转矩 Nm (3.9)根据计算得出的所需力矩,结合北京和利时电机技术有限公司生产的90系列的五相混合型步进电机的技术数据和矩频特性曲线,如图3.3和图3.4所示,选择90BYG5200B-SAKRML-0301型号的步进电机。图3.1 90BYG步进电机技术数据图3.2 90BYG5200B-SAKRML-0301型步进电机矩频特性曲线3.4传动结构形式的选择考虑到轴的载荷较大,材料选用45,热处理调质处理,取材料系数 所以,有该轴的最小轴径为: 考虑到键槽的影响,所以dmin取值为17MM,具体结构如下:图3.3轴的受力模型简化(见图7)及受力计算图3.4 轴的受力分析知: 3.5 轴承的寿命校核鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.校核步骤及计算结果见下表:表.3.1 轴承寿命校核步骤及计算结果计算步骤及内容计算结果6014A端B端由手册查出Cr、C0r及e、Y值Cr=98.5kNC0r=86.0kNe=0.68计算比值Fa/FrFaA /FrA e确定X、Y值XA=1 YA =0 查载荷系数fP1.2计算当量载荷P=Fp(XFr+YFa)PA=5796.24 PB=6759.14计算轴承寿命763399h大于12480h由计算结果可见轴承6014AC、6007均合格,最终选用轴承6014。四、轴的强度校核经分析知C、D两处为可能的危险截面, 现来校核这两处的强度:(1)、合成弯矩(2)、扭矩T图(3)、当量弯矩(4)、校核由手册查材料45的强度参数C截面当量弯曲应力:由计算结果可见C截面安全。各轴键、键槽的选择及其校核因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.一、 电机键的选择及校核:带轮处键:按照带轮处的轴径及轴长选 键B8X7,键长50,GB/T1096联结处的材料分别为: 45钢(键) 、40Cr(轴) (1) 刚轮处键: 按照轮毂处的轴径及轴长选 键B14X9GB/T1096联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、20Cr(轴)此时, 键联结合格.(2)输出轴处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)其中键的强度最低,因此按其许用应力进行校核,查手册其该键联结合格.3.6 手爪夹持器结构设计与校核3.6.1手爪夹持器种类1.连杆杠杆式手爪这种手爪在活塞的推力下,连杆和杠杆使手爪产生夹紧(放松)运动,由于杠杆的力放大作用,这种手爪有可能产生较大的夹紧力。通常与弹簧联合使用。2.楔块杠杆式手爪利用楔块与杠杆来实现手爪的松、开,来实现抓取工件。3.齿轮齿条式手爪这种手爪通过活塞推动齿条,齿条带动齿轮旋转,产生手爪的夹紧与松开动作。4.滑槽式手爪 当活塞向前运动时,滑槽通过销子推动手爪合并,产生夹紧动作和夹紧力,当活塞向后运动时,手爪松开。这种手爪开合行程较大,适应抓取大小不同的物体。5.平行杠杆式手爪不 需要导轨就可以保证手爪的两手指保持平行运动采用平行四边形机构,因此,比带有导轨的平行移动手爪的摩擦力要小很多结合具体的工作情况,采用连杆杠杆式手爪。驱动活塞 往复移动,通过活塞杆端部齿条,中间齿条及扇形齿条 使手指张开或闭合。手指的最小开度由加工 工件的直径来调定。本设计按照所要捆绑的重物最大使用 的钢丝绳直径为50mm来设计。a有适当的夹紧力手部在工作时,应具有适当的夹紧力,以保证夹持稳定可靠,变形小,且不损坏工件的已加工表面。对于刚性很差的工件夹紧力大小应该设计得可以调节,对于笨重的工件应考虑采用自锁安全装置。b有足够的开闭范围工作时,一个手指开闭位置以最大变化量称为开闭范围。夹持类手部的手指都有张开和闭合装置。可用开闭角和手指夹紧端长度表示。于回转型手部手指开闭范围,手指开闭范围的要求与许多因素有关c力求结构简单,重量轻,体积小作时运动状态多变,其结构,重量和体积直接影响整个气压机械手的结构,抓重,定位精度,运动速度等性能。手部处于腕部的最前端,工因此,在设计手部时,必须力求结构简单,重量轻,体积小。d手指应有一定的强度和刚度因此送料,采用最常用的外卡式两指钳爪,夹紧方式用常闭式弹簧夹紧,夹紧气压机械手,根据工件的形状,松开时,用单作用式气压缸。此种结构较为简单,制造方便。气压缸右腔停止进油时,气压缸右腔进油时松开工件。3.6.2夹持器设计计算手爪要能抓起工件必须满足: (3-6)式中,-为所需夹持力;-安全系数,通常取1.22;-为动载系数,主要考虑惯性力的影响可按估算,为机械手在搬运工件过程的加速度,为重力加速度;-方位系数,查表选取;-被抓持工件的重量 20;带入数据,计算得: ;理论驱动力的计算: (3-7)式中,-为柱塞缸所需理论驱动力;-为夹紧力至回转支点的垂直距离;-为扇形齿轮分度圆半径;-为手指夹紧力;-齿轮传动机构的效率,此处选为0.92;其他同上。带入数据,计算得 计算驱动力计算公式为: (3-8)式中,-为计算驱动力;-安全系数,此处选1.2;-工作条件系数,此处选1.1; 而气压缸的工作驱动力是由缸内油压提供的,故有 (3-9)式中,-为柱塞缸工作油压;-为柱塞截面积;选取缸内径为40mm3.7 夹持装置气缸设计计算3.7.1 初步确系统压力表3.2 按负载选择工作压力1负载/ KN50工作压力/MPa 0.811.522.5334455表3.3 各种机械常用的系统工作压力1机械类型机 床农业机械小型工程机械建筑机械气凿岩机气机大中型挖掘机重型机械起重运输机械磨床组合机床龙门刨床拉床工作压力/MPa0.82352881010182032由表3.2和表3.3可知,初选气缸的设计压力P1=1MPa3.7.2气缸计算估算要驱动的负载大小为300N,考虑到气缸未加载时实际所能输出的力,受气缸活塞和缸筒之间的摩擦、活塞杆与前气缸之间的摩擦力的影响,并考虑到机械爪的质量。在研究气缸的性能和确定气缸的缸径时,常用到负载率:由液压与气压传动技术表3.4:表3.4 气缸的运动状态与负载率阻性负载(静负载)惯性负载的运动速度v运动的速度v=50mm/s,取=0.60,所以实际的气缸缸负载的大小为:F=F0/=500N(2) 气缸内径的确定表3.5 气缸内径确定公式项目计算公式缸径双作用气缸推力拉力 表1 气缸内径系列GB/T2348-1980mm810121620253240506380100125160200250320400500按GB/T2348-1980,取标准值D=40mm;本来可以取32的,考虑不可预测的超载等因素,故在这取的略微大一些。查气传动与控制手册根据杆径比d/D,一般的选取原则是:当活塞杆受拉时,一般选取d/D=0.3-0.5,当活塞杆受压时,一般选取d/D=0.5-0.7。活塞杆直径d=0.45D=18mm 取d=18(标准直径)表2 活塞杆直径系列456810121416182022252832364045505663708090100110125140160180200220250280320360400(1) 气缸缸体厚度计算 缸体是气缸中最重要的零件,当气缸的工作压力较高和缸体内经较大时,必须进行强度校核。缸体的常用材料为20、25、35、45号钢的无缝钢管。在这几种材料中45号钢的性能最为优良,所以这里选用45号钢作为缸体的材料。式中,实验压力,MPa。当气缸额定压力Pn5.1 MPa时,Py=1.5Pn,当Pn16MPa时,Py=1.25Pn。缸筒材料许用应力,N/mm。=,为材料的抗拉强度。注:1.额定压力Pn额定压力又称公称压力即系统压力,Pn=1MPa2.最高允许压力PmaxPmax1.5Pn=1.251=1.25MPa气缸缸筒材料采用45钢,则抗拉强度:b=600MPa安全系数n按气传动与控制手册P243表210,取n=5。则许用应力=120MPa = =0.2083mm则气缸缸体外径为50mm。3.缸筒结构设计缸筒两端分别与缸盖和缸底链接,构成密封的压力腔,因而它的结构形式往往和缸盖及缸底密切相关6。因此,在设计缸筒结构时,应根据实际情况,选用结构便于装配、拆卸和维修的链接形式,缸筒内外径应根据标准进行圆整。3.7.3 活塞杆的计算校核2.活塞杆强度计算: 90mm (4-4)式中 许用应力;(Q235钢的抗拉强度为375-500MPa,取400MPa,为位安全系数取5,即活塞杆的强度适中)3活塞杆的结构设计 活塞杆的外端头部与负载的拖动油马达机构相连接,为了避免活塞杆在工作生产中偏心负载力,适应气缸的安装要求,提高其作用效率,应根据负载的具体情况,选择适当的活塞杆端部结构。4.活塞杆的密封与防尘活塞杆的密封形式有Y形密封圈、U形夹织物密封圈、O形密封圈、V形密封圈等6。采用薄钢片组合防尘圈时,防尘圈与活塞杆的配合可按H9/f9选取。薄钢片厚度为0.5mm。为方便设计和维护,本方案选择O型密封圈。3.7.4 气缸工作行程的确定 气缸工作行程长度可以根据执行机构实际工作的最大行程确定,并参照表4-4选取标准值。气缸活塞行程参数优先次序按表4-4中的a、b、c选用。表4-4(a)气缸行程系列(GB 2349-80)62550801001251602002503204005006308001000125016002000250032004000表4-4(b) 气缸行程系列(GB 2349-80)6 40 6390110140180220280360450550700900110014001800220028003600表4-4(c) 气缸形成系列(GB 2349-80)6240260300340380420480530600650750850950105012001300150017001900210024002600300034003800根据设计要求知快速接近工件,行程根据任务书要求,根据表3-8,可选取气缸的工作行程为100mm 3.7.5 活塞的设计由于活塞在气力的作用下沿缸筒往复滑动,因此,它与缸筒的配合应适当,既不能过紧,也不能间隙过大。配合过紧,不仅使最低启动压力增大,降低机械效率,而且容易损坏缸筒和活塞的配合表面;间隙过大,会引起气缸内部泄露,降低容积效率,使气缸达不到要求的设计性能。考虑选用O型密封圈。3.7.6 导向套的设计与计算1.最小导向长度H的确定 当活塞杆全部伸出时,从活塞支承面中点到到导向套滑动面中点的距离称为最小导向长度1。影响气缸工作性能和稳定性。因此,在设计时必须保证气缸有一定的最小导向长度。根据经验,当气缸最大行程为L,缸筒直径为D时,最小导向长度为: (4-5)一般导向套滑动面的长度A,在缸径小于80mm时取A=(0.61.0)D,当缸径大于80mm时取A=(0.61.0)d.。活塞宽度B取B=(0.61.0)D。若导向长度H不够时,可在活塞杆上增加一个导向套K(见图4-1)来增加H值。隔套K的宽度。图3.5 气缸最小导向长度1因此:最小导向长度,取H=9cm;导向套滑动面长度A=活塞宽度B=2.导向套的结构 导向套有普通导向套、易拆导向套、球面导向套和静压导向套等,可按工作情况适当选择。3.7.7 端盖和缸底的计算校核 在单活塞气缸中,有活塞杆通过的端盖叫端盖,无活塞杆通过的缸盖叫缸头或缸底。端盖、缸底与缸筒构成密封的压力容腔,它不仅要有足够的强度以承受气力,而且必须具有一定的连接强度。端盖上有活塞杆导向孔(或装导向套的孔)及防尘圈、密封圈槽,还有连接螺钉孔,受力情况比较复杂,设计的不好容易损坏。1.端盖的设计计算端盖厚h为:式中 D1螺钉孔分布直径,cm; P压力,; 密封环形端面平均直径,cm; 材料的许用应力,。2.缸底的设计 缸底分平底缸,椭圆缸底,半球形缸底。3.7.8 缸体长度的确定 气缸缸体内部长度应等于活塞的行程与活塞的宽度之和。缸体外形长度还需要考虑到两端端盖的厚度1。一般气缸缸体长度不应大于缸体内经的2030倍。取系数为5,则气缸缸体长度:L=5*10cm=50cm。3.7.9 缓冲装置的设计 气缸的活塞杆(或柱塞杆)具有一定的质量,在气力的驱动下运动时具有很大的动量。在它们的行程终端,当杆头进入气缸的端盖和缸底部分时,会引起机械碰撞,产生很大的冲击和噪声。采用缓冲装置,就是为了避免这种机械撞击,但冲击压力仍然存在,大约是额定工作压力的两倍,这就必然会严重影响气缸和整个气系统的强度及正常工作。缓冲装置可以防止和减少气缸活塞及活塞杆等运动部件在运动时对缸底或端盖的冲击,在它们的行程终端能实现速度的递减,直至为零。 当气缸中活塞活塞运动速度在6m/min以下时,一般不设缓冲装置,而运动速度在12m/min以上时,不需设置缓冲装置。在该组合机床气系统中,动力滑台的最大速度为4m/min,因此没有必要设计缓冲装置。3.8 气压元件选取及工作原理气压驱动是利用压缩气体的压力能来实现能量传递的一种方式,其介质主要是空气,也包括燃气和蒸汽。典型的气压传动系统由以下四部分组成:3.8.1 气源装置气源装置是获得具有一定能量的压缩空气的装置,其主体部分是空气压缩机,有的还配有气源净化处理装置、气罐等附属设备。它将原动机提供的机械能转变为气体的压力能。气压传动对气源的要求:(1) 要求压缩空气具有一定的压力和足够的流量。(2) 要求压缩空气有一定的清洁度和干燥度。下面对于主要的气源装置元件进行如下介绍:1、空气压缩机空气压缩机是产生压缩空气的气压发生装置,是气源主要的设备。按结构和工作原理可分为速度型和容积型两大类。容积型压缩机是利用特殊形状的转子或活塞压缩吸入封闭容积室空气的体积来增加空气的压力。容积型结构简单、使用方便。本设计选用容积型压缩机。2、储气罐储气罐可以调节气流,减少输出气流的脉动,使输出气流连续和气压稳定,也可以作为应急气源使用,还可以进一步分离油水杂质。储气罐上装有安全阀,使其极限压力比正常工作压力高10%,并装有指示罐内压力的压力表和排污阀等。罐的型式可分为立式和卧式两种。本设计选用立式储气罐,因为它的进气口在下,出气口在上,以利用进一步分离空气中的油、水。3.8.2 执行元件 执行元件是以压缩空气为工作介质产生机械运动,并将气体的压力能转变为机械能的能量转换装置,如气缸输出直线往复式机械能,摆动气缸输出回转摆动式机械能。 1、气缸输出直线往复式气缸是执行元件之一。目前最常选用的是标准气缸,其结构和参数都已系列化、标准化、通用化。水平伸缩气缸选用单活塞杆双作用气缸。单活塞杆双作用气缸一般由缸筒、前后缸盖、活塞、活塞杆、密封件和紧固件等组成。其工作原理:对于前伸/回缩气缸,当左侧无杆腔进气,右侧有杆腔排气时活塞杆前伸,反之,活塞杆回缩;对于上升/下降气缸,当上侧无杆腔进气,下侧有杆腔排气时,活塞杆下降,反之活塞杆上升。2、摆动气缸输出回转摆动式摆动气缸分为单叶片式和双叶片式。单叶片式摆动气缸:压缩空气由进气口输入,作用在叶片上,带动轴回转产生转矩,另一腔的空气从排气口排出。双叶片式摆动气缸:从进气口进入的压缩空气作用在一个叶片上,同时通过轴上的气路也作用在另一叶片上带动轴回转。这样双叶片式产生的转矩将是单叶片式的2倍。本设计采用双叶片式摆动气缸,这样就能产生更大的转矩,以利于机械手的转动。3.8.3 控制元件控制元件是用来调节压缩空气的压力、流量和控制其流动方向,使执行机构获得必要的力、动作速度和改变运动方向,并按规定的程序工作。控制元件按功能分为压力控制阀、流量控制阀和方向控制阀。1、压力控制阀调节和控制压力大小的元件称为压力控制阀。它包括调压阀、溢流阀、顺序阀及多功能组合阀。调压阀是出口侧压力可调,并能保持出口侧压力稳定的压力控制阀。溢流阀是在回路中的压力达到阀的规定值时,使部分气体从排气侧排出,以保持回路内的压力在规定值的阀。调速阀是根据“流量负反馈”原理设计而成的单路流量阀。调速阀一般用于执行元件负载变化大而运动速度要求稳定的系统中。调速阀根据“串联减压式”和“并联溢流式”,又分为调速阀和溢流节流阀两种主要类型。本设计选用串联减压式调速阀。2、方向控制阀方向控制阀是改变压缩空气流动方向和气流通断状态,使执行元件的动作或状态发生变换的控制阀,其通常可分为单向型控制阀和换向型控制阀两类。(1) 单向型控制阀单向阀是指气流只能向一个方向流动而不能反向流动通过的阀,是最简单的单向型方向阀。在系统中,单向阀除单独使用之外,经常与流量阀、换向阀和压力阀组合成只能单向控制的阀。单向调速阀就是单向阀与节流阀并联而成。单向调速阀是把节流阀芯分成了上阀芯和下阀芯两部分。当流体正向流动时,其节流过程与调速阀是一样的,节流缝隙的大小可通过手柄进行调节;当流体反向流动时,靠流体的压力把阀芯压下,下阀芯起单向阀作用,单向阀打开,可实现流体反向自由流动。当正向流动时,经过节流阀节流。当反向流动时,单向阀打开,不节流。(2) 换向型控制阀 换向型方向控制阀按控制方式分类,分为气压控制、电磁控制、人力控制。换向阀是利用阀芯和阀体间相对位置的不同来变换不同管路间的通断关系,实现接通、切断,或改变流体方向的阀。它的用途很广,种类也很多。换向阀的性能的主要要求是:(1)油液流经换向阀时的压力损失小;(2)互不相通的油口间的泄漏小;(3)换向可靠、迅速且平稳无冲击。按换向阀的操纵方式有:手动式、机动式、电磁式、液动式、电液动式、式。按工作位置数和控制的通道数有:二位二通阀、二位三通阀、二位四通阀、二位五通阀、三位四通阀、三位五通阀等。本设计选用三位四通电磁换向阀理由如下:(1) 电磁换向阀是利用电磁铁吸力推动阀芯来改变阀的工作位置。由于它操作轻便,易于实现自动化,因此应用广泛。(2) 当三位四通电磁换向阀两端电磁铁都断电时,阀芯处于中位,各口互不相通。(3) 使用三位四通电磁换向阀能够快速实现气缸的正反向运动。3.8.4 辅助元件辅助元件是保证压缩空气的净化、元件的润滑、元件间的连接及消声等所必须的。可分为气源净化装置和其他辅助元件两大类。1、气源净化装置过滤器、调压阀和油雾器等组合在一起称为空气处理单元,又称为三联件。压缩的空气中含有各种杂质,这些杂质的存在会降低元件的耐用度和性能,造成误动作和事故,必须清除。空气处理单元就是用来清除压缩空气的杂质,提高空气质量的元件。2、消声器消声器是降低排气噪声的装置。压缩空气完成驱动工作后,由换向阀的排气口排入大气。此时的压缩空气是以接近音速的状态进入大气,由于压力的骤然变化,使空气急速膨胀从而发出噪音,其音量一般为80dB100dB,为了改善劳动条件,应使用消声器。常用的消声器有三种类型吸收型、膨胀型和吸收膨胀型。吸收型消声器是依靠吸声材料来消声的。膨胀型消声器的结构比较简单,相当于一段比排气口径大的管件,当气流通过时,让气流在其内部扩散、膨胀、碰壁撞击、反射、相互干涉而消声。吸收膨胀型消声器是上述两种的结合。气流由斜孔引入,气流束相互撞击、干涉、进一步减速,再通过设在消声器内表面的吸声材料消声,最后排向
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:六自由度大臂机器人的设计【三维PROE】【14张CAD图纸+毕业论文】【并联机械手】
链接地址:https://www.renrendoc.com/p-462114.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!